Open Access
Issue |
ESAIM: M2AN
Volume 57, Number 5, September-October 2023
|
|
---|---|---|
Page(s) | 2701 - 2733 | |
DOI | https://doi.org/10.1051/m2an/2023063 | |
Published online | 14 September 2023 |
- V. Bacchelli, Uniqueness for the determination of unknown boundary and impedance with homogeneous Robin condition. Inverse Problems 25 (2009) 015004. [CrossRef] [MathSciNet] [Google Scholar]
- J.W. Barrett and C.M. Elliott, Fixed mesh finite element approximations to a free boundary problem for an elliptic equation with an oblique derivative boundary condition. Comput. Math. Appl. 11 (1985) 335–345. [CrossRef] [MathSciNet] [Google Scholar]
- M. Bassemoulin-Chatard, C. Chainais-Hillairet and F. Filbet, On discrete functional inequalities for some finite volume schemes. IMA J. Numer. Anal. 35 (2015) 1125–1149. [CrossRef] [MathSciNet] [Google Scholar]
- B. Bin-Mohsin and D. Lesnic, Identication of a corroded boundary and its Robin coefficient. East Asian J. Appl. Math. 2 (2012) 126–149. [CrossRef] [MathSciNet] [Google Scholar]
- A. Bradji, Note on the convergence of a finite volume scheme using a general nonconforming mesh for an oblique derivative boundary value problem, in Finite Volumes for Complex Applications VII – Methods, Theoretical Aspects. Proceedings of the FVCA 7, Berlin, Germany, June 15–20, 2014, edited by J. Fuhrmann, et al. Vol. I. Springer International Publishing (2014) 149–157. [CrossRef] [Google Scholar]
- A. Bradji, Some simple error estimates for finite volume approximation of parabolic equations. C. R. Math. Acad. Sci. Paris 346 (2008) 571–574. [CrossRef] [MathSciNet] [Google Scholar]
- A. Bradji and J. Fuhrmann, Error estimates of the discretization of linear parabolic equations on general nonconforming spatial grids. C. R. Math. Acad. Sci. Paris 348 (2010) 1119–1122. [CrossRef] [MathSciNet] [Google Scholar]
- A. Bradji and J. Fuhrmann, Some abstract error estimates of a finite volume scheme for a nonstationary heat equation on general nonconforming multidimensional spatial meshes. Appl. Math. 58 (2013) 1–38. [CrossRef] [MathSciNet] [Google Scholar]
- A. Bradji and J. Fuhrmann, On the convergence and convergence order of finite volume gradient schemes for oblique derivative boundary value problems. Comput. Appl. Math. 37 (2018) 2533–2565. [CrossRef] [MathSciNet] [Google Scholar]
- A. Bradji and T. Gallouët, Error estimate for finite volume approximate solutions of some oblique derivative boundary problems. Int. J. Finite Volumes 3 (2006) 1–35. [Google Scholar]
- E. Cahib, D. Fasino and E. Sincich, Linearization of a free boundary problem in corrosion detection. J. Math. Anal. Appl. 378 (2011) 700–709. [CrossRef] [MathSciNet] [Google Scholar]
- F. Cakoni and R. Kress, Integral equations for inverse problems in corrosion detection from partial Cauchy data. Inverse Prob. Imaging 1 (2007) 229–245. [CrossRef] [Google Scholar]
- F. Cakoni and R. Kress, Integral equation methods for the inverse obstacle problem with generalized impedance boundary condition. Inverse Prob. 29 (2013) 015005. [CrossRef] [Google Scholar]
- F. Cakoni, Y. Hu and R. Kress, Simultaneous reconstruction of shape and generalized impedance functions in electrostatic imaging. Inverse Prob. 30 (2014) 105009. [CrossRef] [Google Scholar]
- S. Chaabane and M. Jaoua, Identification of Robin coefficients by the means of boundary measurements. Inverse Problems 15 (1999) 1425–1438. [CrossRef] [MathSciNet] [Google Scholar]
- S. Chaabane, C. Elhechmi and M. Jaoua, A stable recovery method for the Robin inverse problem. Math. Comput. Simul. 66 (2004) 367–383. [CrossRef] [Google Scholar]
- S. Chaabane, I. Feki and N. Mars, Numerical reconstruction of a piecewise constant Robin parameter in the two- or three-dimensional case. Inverse Problems 28 (2012) 0650216. [Google Scholar]
- J. Droniou, R. Eymard, T. Gallouët, C. Guichard and R. Herbin, The Gradient Discretisation Method. Mathématiques et Applications. Vol. 82. Springer Nature, Switzerland, AG (2018). [CrossRef] [Google Scholar]
- J. Droniou, M. Medla and K. Mikula, Design and analysis of finite volume methods for elliptic equations with oblique derivatives; application to Earth gravity field modelling. J. Comput. Phys. 398 (2019) 108876. [CrossRef] [MathSciNet] [Google Scholar]
- J. Droniou, R. Eymard, T. Gallouët, C. Guichard and R. Herbin, A unified analysis of elliptic problems with various boundary conditions and their approximation. Czechoslovak Math. J. 70 (2020) 339–368. [CrossRef] [MathSciNet] [Google Scholar]
- A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Applied Mathematical Sciences. Vol. 159. Springer-Verlag, New York, NY (2004). [Google Scholar]
- R. Eymard, T. Gallouët and R. Herbin, Finite volume methods. Handb. Numer. Anal. 7 (2000) 713–1018. [Google Scholar]
- R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of Numerical Analysis, edited by P.G. Ciarlet and J.L. Lions. North-Holland, Amsterdam VII (2000) 723–1020. [Google Scholar]
- R. Eymard, T. Gallouët and R. Herbin, A cell-centred finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension. IMA J. Numer. Anal. 26 (2006) 326–353. [CrossRef] [MathSciNet] [Google Scholar]
- R. Eymard, T. Gallouët and R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30 (2010) 1009–1043. [CrossRef] [MathSciNet] [Google Scholar]
- D. Fasino and G. Inglese, An inverse Robin problem for Laplace’s equation: theoretical results and numerical methods. Inverse Problems 15 (1999) 41–48. [CrossRef] [MathSciNet] [Google Scholar]
- W. Freeden and H. Kersten, A constructive approximation theorem for the oblique derivative problem in potential theory. Math. Methods Appl. Sci. 3 (1981) 104–114. [CrossRef] [MathSciNet] [Google Scholar]
- T. Gallouët, R. Herbin and M.-H. Vignal, Error estimates on the approximate finite volume solution of convection diffusion equations with general boundary conditions. SIAM J. Numer. Anal. 37 (2000) 1935–1972. [CrossRef] [MathSciNet] [Google Scholar]
- K. Gärtner, H. Si and J. Fuhrmann, Boundary conforming Delaunay mesh generation. Comput. Math. Math. Phys. 50 (2010) 38–53. [CrossRef] [MathSciNet] [Google Scholar]
- P. Grisvard, Elliptic Problems in Non-smooth Domains. Monographs and Studies in Mathematics. Vol. 24. Pitman Publishing (1985). [Google Scholar]
- G. Hu and M. Yamamoto, Holder stability estimate of Robin coefficient in corrosion detection with a single boundary measurement. Inverse Problems 31 (2015) 115009. [CrossRef] [MathSciNet] [Google Scholar]
- G. Inglese, An inverse problem in corrosion detection. Inverse Problems 13 (1997) 977–994. [CrossRef] [MathSciNet] [Google Scholar]
- G. Inglese and F. Mariani, Corrosion detection in conducting boundaries. Inverse Problems 20 (2004) 1207–1215. [CrossRef] [MathSciNet] [Google Scholar]
- B. Jin, Conjugate gradient method for the Robin inverse problem associated with the Laplace equation. Int. J. Numer. Methods Eng. 71 (2007) 433–453. [CrossRef] [Google Scholar]
- B.T. Johansson and D. Lesnic, The method of fundamental solutions for an exterior problem in potential theory, in Advances in Boundary Integral Methods, edited by J. Trevelyan. Chap. 20. Durham University (2007) 185–191. [Google Scholar]
- D.A. Jones, Principles and Prevention of Corrosion. Prentice Hall, Hoboken, NJ (1996). [Google Scholar]
- P. Kaup and F. Santosa, Nondestructive evaluation of corrosion damage using electrostatic measurements. J. Nondestr. Eval. 14 (1995) 127–136. [CrossRef] [Google Scholar]
- R. Klees, Gravity field determination using boundary element methods. Surv. Geophys. 14 (1993) 419–432. [CrossRef] [Google Scholar]
- K.R. Kohr and A.J. Pope, Uniqueness and existence for the geodetic boundary value problem using the known surface of the earth. Bull. Geodesique 106 (1972) 467–476. [CrossRef] [Google Scholar]
- D. Lesnic, The boundary element method for solving the Laplace equation in two-dimensions with oblique derivative boundary conditions. Commun. Numer. Methods Eng. 23 (2007) 1071–1080. [Google Scholar]
- M. Macák, M. Mikula and Z. Minarechová, Solving oblique derivative boundary value problem by the finite volume method, in Proceedings of Contributed Papers and Posters, edited by A. Handlovicova, et al. Slovak University of Technology, Faculty of Civil Engineering, Bratislava (2012) 75–84. [Google Scholar]
- P.A. Martin, On the diffraction of Poincare waves. Math. Methods Appl. Sci. 24 (2001) 913–925. [CrossRef] [MathSciNet] [Google Scholar]
- F. Mehats, Convergence of a numerical scheme for a nonlinear oblique derivative boundary value problem. M2AN: Math. Model. Numer. Anal. 36 (2002) 1111–1132. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- C.D. Pagani and D. Pierotti, Identifiability problems and defects with the Robin condition, Inverse Problems 25 (2009) 055007. [CrossRef] [MathSciNet] [Google Scholar]
- A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Springer Series in Computational Mathematics. Vol. 23. Springer, Berlin (2008). [Google Scholar]
- W. Rundell, Recovering an obstacle and its impedance from Cauchy data. Inverse Problems 24 (2008) 045003. [CrossRef] [MathSciNet] [Google Scholar]
- M. Vogelius and J.M. Xu, An effective nonlinear boundary condition for a corroding surface. Identification of the damage based on steady state electric data. ZAMP 49 (1998) 656–679. [Google Scholar]
- H. Wang and J. Liu, The two-dimensional direct and inverse scattering problems with generalized oblique derivative boundary condition. SIAM J. Appl. Math. 752 (2015) 313–334. [CrossRef] [MathSciNet] [Google Scholar]
- Y.-J. Yu and X.-L. Cheng, Numerical identification of Robin coefficient by a Kohn-Vogelius type regularization method. Inverse Problems Sci. Eng. 25 (2017) 1014–1041. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.