Open Access
Volume 57, Number 5, September-October 2023
Page(s) 2623 - 2658
Published online 14 September 2023
  1. H. Abels, On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities. Arch. Ration. Mech. Anal. 194 (2009) 463–506. [Google Scholar]
  2. H. Abels and D. Lengeler, On sharp interface limits for diffuse interface models for two-phase flows. Interfaces Free Boundaries 16 (2014) 395–418. [CrossRef] [MathSciNet] [Google Scholar]
  3. H. Abels and S. Schaubeck, Sharp interface limit for the Cahn–Larch/e system. Asymptot. Anal. 91 (2015) 283–340. [MathSciNet] [Google Scholar]
  4. H. Abels and Y. Liu, Sharp interface limit for a Stokes/Allen–Cahn system. Arch. Ration. Mech. Anal. 229 (2018) 417–502. [CrossRef] [MathSciNet] [Google Scholar]
  5. H. Abels, Y. Liu, A. Schöttl, Sharp interface limits for diffuse interface models for two-phase flows of viscous incompressible fluids. In Transport Processes at Fluidic Interfaces, Springer (2017) 231–253. [CrossRef] [Google Scholar]
  6. H. Aimar, M. Carena, R. Durán and M. Toschi, Powers of distances to lower dimensional sets as Muckenhoupt weights. Acta Math. Hungar. 143 (2014) 119–137. [CrossRef] [MathSciNet] [Google Scholar]
  7. S. Aland, J. Lowengrub and A. Voigt, Two-phase flow in complex geometries: A diffuse domain approach. Comput. Model. Eng. Sci. 57 (2010) 77. [Google Scholar]
  8. A. Allendes, E. Otárola and A.J. Salgado, The stationary Boussinesq problem under singular forcing. Math. Models Methods Appl. Sci. 31 (2021) 789–827. [CrossRef] [MathSciNet] [Google Scholar]
  9. D.M. Anderson, G.B. McFadden and A.A. Wheeler, Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30 (1998) 139–165. [CrossRef] [Google Scholar]
  10. K. Aukland and R.K. Reed, Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol. Rev. 73 (1993) 1–78. [CrossRef] [PubMed] [Google Scholar]
  11. L. Beirão da Veiga, C. Canuto, R.H. Nochetto and G. Vacca, Equilibrium analysis of an immersed rigid leaflet by the virtual element method. Math. Models Methods Appl. Sci. 31 (2021) 1323–1372. [CrossRef] [MathSciNet] [Google Scholar]
  12. S. Bertoluzza, M. Ismail and B. Maury, Analysis of the fully discrete fat boundary method. Numer. Math. 118 (2011) 49–77. [CrossRef] [MathSciNet] [Google Scholar]
  13. M.J. Borden, C.V. Verhoosel, M.A. Scott, T.J.R. Hughes and C.M. Landis, A phase-field description of dynamic brittle fracture. Comput. Methods Appl. Mech. Eng. 217 (2012) 77–95. [CrossRef] [Google Scholar]
  14. A. Bueno-Orovio, V.M. Perez-Garcia and F.H. Fenton, Spectral methods for partial differential equations in irregular domains: the spectral smoothed boundary method. SIAM J. Sci. Comput. 28 (2006) 886–900. [CrossRef] [MathSciNet] [Google Scholar]
  15. M. Burger, O.L. Elvetun and M. Schlottbom, Diffuse interface methods for inverse problems: case study for an elliptic Cauchy problem. Inverse Probl. 31 (2015) 125002. [CrossRef] [Google Scholar]
  16. M. Burger, O.L. Elvetun and M. Schlottbom, Analysis of the diffuse domain method for second order elliptic boundary value problems. Found. Comut. Math. 17 (2017) 627–674. [CrossRef] [Google Scholar]
  17. J. Burkardt and C. Trenchea, Refactorization of the midpoint rule. Appl. Math. Lett. 107 (2020) 106438. [CrossRef] [MathSciNet] [Google Scholar]
  18. E. Burman and P. Hansbo, A unified stabilized method for Stokes’ and Darcy’s equations. J. Comput. Appl. Math. 198 (2007) 35–51. [Google Scholar]
  19. Y. Cao, M. Gunzburger, F. Hua and X. Wang, Coupled Stokes-Darcy model with Beavers-Joseph interface boundary condition. Commun. Math. Sci. 8 (2010) 1–25. [CrossRef] [MathSciNet] [Google Scholar]
  20. Y.G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differ. Geom. 33 (1991) 749–786. [Google Scholar]
  21. W. Chen, M. Gunzburger, D. Sun and X. Wang, Efficient and long-time accurate second-order methods for the Stokes-Darcy system. SIAM J. Numer. Anal. 51 (2013) 2563–2584. [CrossRef] [MathSciNet] [Google Scholar]
  22. W. Chen, M. Gunzburger, D. Sun and X. Wang, An efficient and long-time accurate third-order algorithm for the Stokes-Darcy system. Numer. Math. 134 (2016) 857–879. [CrossRef] [MathSciNet] [Google Scholar]
  23. P.G. Ciarlet, The Finite Element Method for Elliptic Problems, Vol. 4. North Holland (1978). [Google Scholar]
  24. R. Dautray and J.-L. Lions, Functional and variational methods, With the collaboration of Michel Artola, Marc Authier, Philippe Bénilan, Michel Cessenat, Jean Michel Combes, Hélène Lanchon, Bertrand Mercier, Claude Wild and Claude Zuily, Translated from the French by Ian N. Sneddon. Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 2. Springer-Verlag, Berlin (1988). [Google Scholar]
  25. M. Discacciati and A. Quarteroni, Navier-Stokes/Darcy coupling: modeling, analysis, and numerical approximation. Rev. Mat. Complut. 22 (2009) 315–426. [CrossRef] [MathSciNet] [Google Scholar]
  26. M. Discacciati and L. Gerardo-Giorda, Optimized Schwarz methods for the Stokes-Darcy coupling. IMA J. Numer. Anal. 38 (2018) 1959–1983. [CrossRef] [MathSciNet] [Google Scholar]
  27. M. Discacciati, E. Miglio and A. Quarteroni, Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43 (2002) 57–74. [Google Scholar]
  28. M. Discacciati, A. Quarteroni and A. Valli, Robin-Robin domain decomposition methods for the Stokes-Darcy coupling. SIAM J. Numer. Anal. 45 (2007) 1246–1268. [Google Scholar]
  29. Q. Du and X. Feng, The phase field method for geometric moving interfaces and their numerical approximations. Handb. Numer. Anal. 21 (2020) 425–508. [Google Scholar]
  30. G. Du, Q. Li and Y. Zhang, A two-grid method with backtracking for the mixed Navier–Stokes/Darcy model. Numer. Methods Partial Differ. Equ. 36 (2020) 1601–1610. [CrossRef] [Google Scholar]
  31. R. Durán, E. Otárola and A. Salgado, Stability of the Stokes projection on weighted spaces and applications. Math. Comput. 89 (2020) 1581–1603. [CrossRef] [Google Scholar]
  32. C.M. Elliott, B. Stinner, V. Styles and R. Welford, Numerical computation of advection and diffusion on evolving diffuse interfaces. IMA J. Numer. Anal. 31 (2011) 786–812. [CrossRef] [MathSciNet] [Google Scholar]
  33. A. Ern and J.-L. Guermond, Theory and practice of finite elements. In Vol. 159 of Applied Mathematical Sciences. Springer-Verlag, New York (2004). [CrossRef] [Google Scholar]
  34. R. Farwig and H. Sohr, Weighted Lq-theory for the Stokes resolvent in exterior domains. J. Math. Soc. Japan 49 (1997) 251–288. [CrossRef] [MathSciNet] [Google Scholar]
  35. E. Feireisl, H. Petzeltová, E. Rocca and G. Schimperna, Analysis of a phase-field model for two-phase compressible fluids. Math. Models Methods Appl. Sci. 20 (2010) 1129–1160. [CrossRef] [MathSciNet] [Google Scholar]
  36. S. Franz, H.-G. Roos, R. Gärtner and A. Voigt, A note on the convergence analysis of a diffuse-domain approach. Comput. Methods Appl. Math. 12 (2012) 153–167. [CrossRef] [MathSciNet] [Google Scholar]
  37. Y. Gao, X. He, L. Mei and X. Yang, Decoupled, linear, and energy stable finite element method for the Cahn–Hilliard–Navier– Stokes-Darcy phase field model. SIAM J. Sci. Comput. 40 (2018) B110–B137. [CrossRef] [Google Scholar]
  38. V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations. In Vol. 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1986). Theory and algorithms. [CrossRef] [Google Scholar]
  39. V. Girault, D. Vassilev and I. Yotov, Mortar multiscale finite element methods for Stokes-Darcy flows. Numer. Math. 127 (2014) 93–165. [CrossRef] [MathSciNet] [Google Scholar]
  40. H. Gomez, L. Cueto-Felgueroso and R. Juanes, Three-dimensional simulation of unstable gravity-driven infiltration of water into a porous medium. J. Comput. Phys. 238 (2013) 217–239. [CrossRef] [MathSciNet] [Google Scholar]
  41. B.E. Griffith and C.S. Peskin, On the order of accuracy of the immersed boundary method: Higher order convergence rates for sufficiently smooth problems. J. Comput. Phys. 208 (2005) 75–105. [CrossRef] [MathSciNet] [Google Scholar]
  42. M. Gunzburger, X. He and B. Li, On Stokes-Ritz projection and multistep backward differentiation schemes in decoupling the Stokes-Darcy model. SIAM J. Numer. Anal. 56 (2018) 397–427. [CrossRef] [MathSciNet] [Google Scholar]
  43. Z. Guo, F. Yu, P. Lin, S. Wise and J. Lowengrub, A diffuse domain method for two-phase flows with large density ratio in complex geometries. J. Fluid Mech. 907 (2021) A38. [CrossRef] [Google Scholar]
  44. J. Happel and H. Brenner, Low Reynolds number hydrodynamics: with special applications to particulate media, Vol. 1. Springer Science & Business Media (2012). [Google Scholar]
  45. F. Hecht, New development in FreeFem++. J. Numer. Math. 20 (2012) 251–266. [Google Scholar]
  46. T. Jayathungage Don, Investigations of lymphatic drainage from the interstitial space. Ph.D. thesis, Research Space, Auckland (2020). [Google Scholar]
  47. M. Kubacki and M. Moraiti, Analysis of a second-order, unconditionally stable, partitioned method for the evolutionary Stokes-Darcy model. Int. J. Numer. Anal. Model. 12 (2015) 704–730. [MathSciNet] [Google Scholar]
  48. A. Kufner and B. Opic, How to define reasonably weighted Sobolev spaces. Comment. Math. Univ. Carol. 253 (1984) 537–554. [Google Scholar]
  49. W. Layton and C. Trenchea, Stability of two IMEX methods, CNLF and BDF2-AB2, for uncoupling systems of evolution equations. Appl. Numer. Math. 62 (2012) 112–120. [CrossRef] [MathSciNet] [Google Scholar]
  50. W. Layton, H. Tran and X. Xiong, Long time stability of four methods for splitting the evolutionary Stokes-Darcy problem into Stokes and Darcy subproblems. J. Comput. Appl. Math. 236 (2012) 3198–3217. [CrossRef] [MathSciNet] [Google Scholar]
  51. W. Layton, H. Tran and C. Trenchea, Analysis of long time stability and errors of two partitioned methods for uncoupling evolutionary groundwater–surface water flows. SIAM J. Numer. Anal. 51 (2013) 248–272. [CrossRef] [MathSciNet] [Google Scholar]
  52. K. Lervag and J. Lowengrub, Analysis of the diffuse-domain method for solving PDEs in complex geometries. Commun. Math. Sci. 13 (2015) 1473–1500. [CrossRef] [MathSciNet] [Google Scholar]
  53. A.J. Leu, D.A. Berk, F. Yuan and R.K. Jain, Flow velocity in the superficial lymphatic network of the mouse tail. Am. J. Physiol. Heart Circ. Physiol. 267 (1994) H1507–H1513. [CrossRef] [Google Scholar]
  54. X. Li, J. Lowengrub, A. Rätz and A. Voigt, Solving PDEs in complex geometries: a diffuse domain approach. Commun. Math. Sci. 7 (2009) 81–107. [CrossRef] [MathSciNet] [Google Scholar]
  55. J. Liu, C.M. Landis, H. Gomez and T.J.R. Hughes, Liquid–vapor phase transition: Thermomechanical theory, entropy stable numerical formulation, and boiling simulations. Comput. Methods Appl. Mech. Eng. 297 (2015) 476–553. [CrossRef] [Google Scholar]
  56. W. Martin, E. Cohen, R. Fish and P. Shirley, Practical ray tracing of trimmed nurbs surfaces. J. Graphics Tools 5 (2000) 27–52. [CrossRef] [Google Scholar]
  57. B. Maury, A fat boundary method for the Poisson problem in a domain with holes. J. Sci. Comput. 16 (2001) 319–339. [CrossRef] [MathSciNet] [Google Scholar]
  58. C. Miehe, M. Hofacker and F. Welschinger, A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Eng. 199 (2010) 2765–2778. [CrossRef] [Google Scholar]
  59. A. Mikelic, M.F. Wheeler and T. Wick, A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium. Multiscale Model. Simul. 13 (2015) 367–398. [Google Scholar]
  60. A. Nekvinda, Characterization of traces of the weighted Sobolev space W1,(Ω, Formula ) on M. Czechoslov. Math. J. 43 (1993) 695–711. [CrossRef] [Google Scholar]
  61. L.H. Nguyen, S.K.F. Stoter, M. Ruess, M.A. Sanchez Uribe and D. Schillinger, The diffuse Nitsche method: Dirichlet constraints on phase-field boundaries. Int. J. Numer. Methods Eng. 113 (2018) 601–633. [CrossRef] [Google Scholar]
  62. R.H. Nochetto, E. Otárola and A.J. Salgado, Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spaces and applications. Numer. Math. 132 (2016) 85–130. [Google Scholar]
  63. S. Osher and R.P. Fedkiw, Level set methods and dynamic implicit surfaces, Vol. 153. Springer (2003). [CrossRef] [Google Scholar]
  64. S. Osher and J.A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79 (1988) 12–49. [NASA ADS] [CrossRef] [Google Scholar]
  65. G. Pacquaut, J. Bruchon, N. Moulin and S. Drapier, Combining a level-set method and a mixed stabilized P1/P1 formulation for coupling Stokes-Darcy flows. Int. J. Numer. Methods Fluids 69 (2012) 459–480. [CrossRef] [Google Scholar]
  66. C.S. Peskin, The immersed boundary method. Acta Numer. 11 (2002) 479–517. [CrossRef] [MathSciNet] [Google Scholar]
  67. I. Ramiere, P. Angot and M. Belliard, A fictitious domain approach with spread interface for elliptic problems with general boundary conditions. Comput. Methods Appl. Mech. Eng. 196 (2007) 766–781. [CrossRef] [Google Scholar]
  68. I. Ramière, P. Angot and M. Belliard, A general fictitious domain method with immersed jumps and multilevel nested structured meshes. J. Comput. Phys. 225 (2007) 1347–1387. [CrossRef] [MathSciNet] [Google Scholar]
  69. A. Rätz and A. Voigt, PDE’s on surfaces—a diffuse interface approach. Commun. Math. Sci. 4 (2006) 575–590. [CrossRef] [MathSciNet] [Google Scholar]
  70. D. Ray, C. Liu and B. Riviere, A discontinuous Galerkin method for a diffuse-interface model of immiscible two-phase flows with soluble surfactant. Comput. Geosci. 25 (2021) 1775–1792. [CrossRef] [MathSciNet] [Google Scholar]
  71. T. Roose and M.A. Swartz, Multiscale modeling of lymphatic drainage from tissues using homogenization theory. J. Biomech. 45 (2012) 107–115. [CrossRef] [Google Scholar]
  72. T. Roubíček, Nonlinear partial differential equations with applications. In Vol. 153 of International Series of Numerical Mathematics, 2nd edition. Birkhäuser/Springer Basel AG, Basel (2013). [Google Scholar]
  73. J.M. Rutkowski, M. Moya, J. Johannes, J. Goldman and M.A. Swartz, Secondary lymphedema in the mouse tail: Lymphatic hyperplasia, vegf-c upregulation, and the protective role of mmp-9. Microvasc. Res. 72 (2006) 161–171. [CrossRef] [Google Scholar]
  74. D.M. Saylor, C. Forrey, C.-S. Kim and J.A. Warren, Diffuse interface methods for modeling drug-eluting stent coatings. Ann. Biomed. Eng. 44 (2016) 548–559. [CrossRef] [PubMed] [Google Scholar]
  75. M. Schlottbom, Error analysis of a diffuse interface method for elliptic problems with Dirichlet boundary conditions. Appl. Numer. Math. 109 (2016) 109–122. [CrossRef] [MathSciNet] [Google Scholar]
  76. S.K.F. Stoter, P. Müller, L. Cicalese, M. Tuveri, D. Schillinger and T.J.R. Hughes, A diffuse interface method for the Navier–Stokes/Darcy equations: Perfusion profile for a patient-specific human liver based on MRI scans. Comput. Methods Appl. Mech. Eng. 321 (2017) 70–102. [CrossRef] [Google Scholar]
  77. M.A. Swartz, A. Kaipainen, P.A. Netti, C. Brekken, Y. Boucher, A.J. Grodzinsky and R.K. Jain, Mechanics of interstitiallymphatic fluid transport: theoretical foundation and experimental validation. J. Biomech. 32 (1999) 1297–1307. [CrossRef] [Google Scholar]
  78. K.E. Teigen, X. Li, J. Lowengrub, F. Wang and A. Voigt, A diffuse-interface approach for modeling transport, diffusion and adsorption/desorption of material quantities on a deformable interface. Commun. Math. Sci. 4 (2009) 1009. [Google Scholar]
  79. K.E. Teigen, P. Song, J. Lowengrub and A. Voigt, A diffuse-interface method for two-phase flows with soluble surfactants. J. Comput. Phys. 230 (2011) 375–393. [CrossRef] [MathSciNet] [Google Scholar]
  80. R. Temam, Navier-Stokes equations. In Vol. 2 of Studies in Mathematics and its Applications. Theory and numerical analysis, With an appendix by F. Thomasset. North-Holland Publishing Co., Amsterdam-New York, revised edition (1979). [Google Scholar]
  81. A.I. Tyulenev, The problem of traces for Sobolev spaces with Muckenhoupt-type weights. Math. Notes 94 (2013) 668–680. Translation of Mat. Zametki 94 (2013) 720–732. [CrossRef] [MathSciNet] [Google Scholar]
  82. A.I. Tyulenev, Description of traces of functions in the Sobolev space with a Muckenhoupt weight. Proc. Steklov Inst. Math. 284 (2014) 280–295. Translation of Tr. Mat. Inst. Steklova 284 (2014) 288–303. [CrossRef] [MathSciNet] [Google Scholar]
  83. H. Wiig and M.A. Swartz, Interstitial fluid and lymph formation and transport: physiological regulation and roles in inflammation and cancer. Physiol. Rev. 92 (2012) 1005–1060. [CrossRef] [PubMed] [Google Scholar]
  84. J. Yang, S. Mao, X. He, X. Yang and Y. He, A diffuse interface model and semi-implicit energy stable finite element method for two-phase magnetohydrodynamic flows. Comput. Methods Appl. Mech. Eng. 356 (2019) 435–464. [CrossRef] [Google Scholar]
  85. J. Yu, Y. Sun, F. Shi and H. Zheng, Nitsche’s type stabilized finite element method for the fully mixed Stokes-Darcy problem with Beavers-Joseph conditions. Appl. Math. Lett. 110 (2020) 106588. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you