Open Access
Volume 57, Number 5, September-October 2023
Page(s) 2659 - 2679
Published online 14 September 2023
  1. M. Ben-Aerzi, The generalized Riemann problem for reactive flows. J. Comput. Phys. 81 (1989) 70–101. [CrossRef] [MathSciNet] [Google Scholar]
  2. A. Bourlioux, A. Majda and V. Roytburd, Theoretical and numerical structure for unstable one-dimensional detonations. SIAM J. Appl. Math. 51 (1991) 303–343. [CrossRef] [MathSciNet] [Google Scholar]
  3. P. Chandrashekar and C. Klingenberg, Entropy stable finite volume scheme for ideal compressible MHD on 2-D Cartesian meshes. SIAM J. Numer. Anal. 54 (2016) 1313–1340. [CrossRef] [MathSciNet] [Google Scholar]
  4. G.-Q. Chen and D.H. Wagner, Global entropy solutions to exothermically reacting, compressible Euler equations. J. Differ. Equ. 191 (2003) 277–322. [CrossRef] [Google Scholar]
  5. G.-Q. Chen, C. David Levermore and T.-P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy. Commun. Pure Appl. Math. 47 (1994) 787–830. [CrossRef] [Google Scholar]
  6. J.F. Clarke, S. Karni, J.J. Quirk, P.L. Roe, L.G. Simmonds and E.F. Toro, Numerical computation of two-dimensional unsteady detonation waves in high energy solids. J. Comput. Phys. 106 (1993) 215–233. [CrossRef] [Google Scholar]
  7. B. Cockburn, G.E. Karniadakis and C.-W. Shu, Discontinuous Galerkin Methods: Theory, Computation and Applications. Springer (2000). [CrossRef] [Google Scholar]
  8. P. Colella, A. Majda and V. Roytburd, Theoretical and numerical structure for reacting shock waves. SIAM J. Sci. Stat. Comput. 7 (1986) 1059–1080. [CrossRef] [Google Scholar]
  9. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 4th dition. Springer-Verlag GmbH, Berlin Heidelberg (2016). [CrossRef] [Google Scholar]
  10. J. Duan and H. Tang, Entropy stable adaptive moving mesh schemes for 2d and 3d special relativistic hydrodynamics. J. Comput. Phys. 426 (2021) 109949. [CrossRef] [Google Scholar]
  11. W. Fickett, Detonations in miniature, Mathematics of Combustion. SIAM (1985). [Google Scholar]
  12. W. Fickett and W.W. Wood, Flow calculations for pulsating one dimensional detonations. Phys. Fluids 9 (1966) 903–916. [CrossRef] [Google Scholar]
  13. W. Fickett and W.C. Davis, Detonation: Theory and Experiment. Dover Publications, Inc., Mineola, NY (1979). [Google Scholar]
  14. U.S. Fjordholm, Siddhartha Mishra, and Eitan Tadmor, ENO reconstruction and ENO interpolation are stable. Found. Comput. Math. 13 (2013) 139–159. [CrossRef] [MathSciNet] [Google Scholar]
  15. A. Gouasmi, K. Duraisamy and S.M. Murman, Formulation of entropy-stable schemes for the multicomponent compressible Euler equations. Comput. Methods Appl. Mech. Eng. 363 (2020) 112912. [CrossRef] [Google Scholar]
  16. J.S. Hesthaven and T. Warburton, Nodal discontinuous galerkin methods: Algorithms, analysis, and applications. Springer (2008). [Google Scholar]
  17. G. Hu, A numerical study of 2D detonation waves with adaptive finite volume methods on unstructured grids. J. Comput. Phys. 331 (2017) 297–311. [CrossRef] [MathSciNet] [Google Scholar]
  18. J. Huang, W. Zhao and C.-W. Shu, A third-order unconditionally positivity-preserving scheme for production-destruction equations with applications to non-equilibrium flows. J. Sci. Comput. 79 (2019) 1015–1056. [Google Scholar]
  19. P. Hwang, R.P. Fedkiw, B. Merriman, T.D. Aslam, A.R. Karagozian and S.J. Osher, Numerical resolution of pulsating detonation waves. Combust. Theory Model. 4 (2000) 217–240. [CrossRef] [Google Scholar]
  20. G.-S. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126 (1996) 202–228. [NASA ADS] [CrossRef] [Google Scholar]
  21. S. Kawashima and W.-A. Yong, Dissipative structure and entropy for hyperbolic systems of balance laws. Arch. Ration. Mech. Anal. 174 (2004) 345–364. [CrossRef] [MathSciNet] [Google Scholar]
  22. P.D. Lax, Shock Waves and Entropy, edited by E.A. Zarantonello. In: Contributions to functional analysis (1971) 603–634. [Google Scholar]
  23. C.D. Levermore, Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83 (1996) 1021–1065. [Google Scholar]
  24. Y.S. Lian and K. Xu, A gas-kinetic scheme for multimaterial flows and its application in chemical reactions. J. Comput. Phys. 163 (2000) 349–375. [CrossRef] [Google Scholar]
  25. I. Müller and T. Ruggeri, Rational Extended Thermodynamics. Springer, New York (1998). [Google Scholar]
  26. G.C. Pomraning, The Equations of Radiation Hydrodynamics. Dover Publications (2005). [Google Scholar]
  27. C.-W. Shu, High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51 (2009) 82–126. [NASA ADS] [CrossRef] [Google Scholar]
  28. E. Tadmor, The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Math. Comput. 49 (1987) 91–103. [CrossRef] [Google Scholar]
  29. A. Tzavaras, Relative entropy in hyperbolic relaxation. Commun. Math. Sci. 3 (2005) 119–132. [CrossRef] [MathSciNet] [Google Scholar]
  30. C. Wang, X. Zhang, C.-W. Shu and J. Ning, Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations. J. Comput. Phys. 231 (2012) 653–665. [CrossRef] [MathSciNet] [Google Scholar]
  31. A.R. Winters and G.J. Gassner, Affordable, entropy conserving and entropy stable flux functions for the ideal MHD equations. J. Comput. Phys. 304 (2016) 72–108. [CrossRef] [MathSciNet] [Google Scholar]
  32. K. Wu and C.-W. Shu, Entropy symmetrization and high-order accurate entropy stable numerical schemes for relativistic MHD equations. SIAM J. Sci. Comput. 42 (2020) A2230–A2261. [CrossRef] [Google Scholar]
  33. W.-A. Yong, Singular perturbations of first-order hyperbolic systems. Ph.D. thesis, Universität Heidelberg (1992). [Google Scholar]
  34. W.-A. Yong, Singular perturbations of first-order hyperbolic systems with stiff source terms. J. Differ. Equ. 155 (1999) 89–132. [Google Scholar]
  35. W.-A. Yong, in Basic aspects of hyperbolic relaxation systems, Advances in the theory of shock waves, edited by H. Freistühler and A Szepessy, In: Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser, Boston, MA (2001) 259–305. [Google Scholar]
  36. W.-A. Yong, Entropy and global existence for hyperbolic balance laws. Arch. Ration. Mech. Anal. 172 (2004) 247–266. [Google Scholar]
  37. W.-A. Yong, An interesting class of partial differential equations. J. Math. Phys. 49 (2008) 033503. [CrossRef] [MathSciNet] [Google Scholar]
  38. Y. Zeng, Gas dynamics in thermal nonequilibrium and general hyperbolic systems with relaxation. Arch. Ration. Mech. Anal. 150 (1999) 225–279. [CrossRef] [MathSciNet] [Google Scholar]
  39. X. Zeng, M. Xiao and G. Ni, An efficient numerical method for reactive flow with general equation of state. Int. J. Numer. Methods Fluids 82 (2016) 631–645. [CrossRef] [Google Scholar]
  40. W. Zhao, Strictly convex entropy and entropy stable schemes for reactive Euler equations. Math. Comput. 91 (2022) 735–760. [CrossRef] [Google Scholar]
  41. K. Zumbrun and W.-A. Yong, Existence of relaxation shock profiles for hyperbolic conservation laws. SIAM J. Appl. Math. 60 (2000) 1565–1575. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you