Open Access
Issue
ESAIM: M2AN
Volume 57, Number 5, September-October 2023
Page(s) 3007 - 3027
DOI https://doi.org/10.1051/m2an/2023073
Published online 29 September 2023
  1. K. Terzaghi, Theoretical Soil Mechanics. Wiley, New York (1943). [CrossRef] [Google Scholar]
  2. M.A. Biot, General theory of three-dimensional consolidation. J. Appl. Phys. 12 (1941) 155–164. [Google Scholar]
  3. M.A. Biot, Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26 (1955) 182–185. [Google Scholar]
  4. Y.K. Cheung and L.G. Tham, Numerical solutions for Biot’s consolidation of layered soil. J. Eng. Mech. 109 (1983) 669–679. [CrossRef] [Google Scholar]
  5. H.F. Wang, Theory of Linear Poroelasticity with Application to Geomechanics and Hydrogeology. Princeton University Press, Princeton (2000). [Google Scholar]
  6. J.P. Morris, W.W. McNab, S.K. Carroll, Y. Hao, W. Foxall and J.L. Wagoner, Injection and reservoir hazard management: the role of injection-induced mechanical deformation and geochemical alteration at in Salah CO2 storage project. Gcags Transactions (2011). [Google Scholar]
  7. J.P. Morris, Y. Hao, W. Foxall and W.W. McNab, A study of injection-induced mechanical deformation at the in Salah CO2 storage project. Int. J. Greenhouse Gas Control 5 (2011) 270–280. [CrossRef] [Google Scholar]
  8. K. Strehlow, J.H. Gottsmann and A.C. Rust, Poroelastic responses of confined aquifers to subsurface strain and their use for volcano monitoring. Solid Earth 6 (2015) 1207–1229. [CrossRef] [Google Scholar]
  9. C.C. Swan, R.S. Lakes and R.A. Brand, Micromechanically based poroelastic modeling of fluid flow in Haversian bone. J. Biomech. Eng. 125 (2003) 25–37. [CrossRef] [PubMed] [Google Scholar]
  10. A.F.T. Mak, L.D. Huang and Q.Q. Wang, A biphasic poroelastic analysis of the flow dependent subcutaneous tissue pressure and compaction due to epidermal loadings-issues in pressure sore. ASME. J. Biomech. Eng. 116 (1994) 421–429. [CrossRef] [PubMed] [Google Scholar]
  11. M. Yang and L.A. Taber, The possible role of poroelasticity in the apparent viscoelastic behavior of passive cardia muscle. J. Biomech. 24 (1991) 587–597. [CrossRef] [Google Scholar]
  12. A. Halder, A. Dhall and A.K. Datta, Modeling transport in porous media with phase change: applications to food processing, J. Heat Transfer 133 (2010) 031010. [Google Scholar]
  13. S. Badia, A. Quaini and A. Quarteroni, Coupling Biot and Navier-Stokes equations for modelling fluid-poroelastic media interaction. J. Comput. Phys. 228 (2009) 7986–8014. [Google Scholar]
  14. K. Lipnikov, Numerical methods for the Biot model in poroelasticity. Ph.D. thesis, University of Houston (2002). [Google Scholar]
  15. R. Ewing, O. Iliev, R. Lazarov and A. Naumovich, On convergence of certain finite volume difference discretizations for 1D poroelasticity interface problems. Numer. Methods Part. Differ. Equ. 23 (2007) 652–671. [CrossRef] [Google Scholar]
  16. F.J. Gaspar, F.J. Lisbona and P.N. Vabishchevich, Finite difference schemes for poroelastic problems. Comput. Methods Appl. Math. 2 (2002) 132–142. [CrossRef] [MathSciNet] [Google Scholar]
  17. A. Naumovich, Efficient numerical methods for the Biot poroelasticity system in multilayered domains. Ph.D. thesis, University of Kaiserslautern (2007). [Google Scholar]
  18. A. Naumovich, On finite volume discretization of the three-dimensional Biot poroelasticity system in multilayer domains. Comput. Meth. App. Math. 6 (2006) 306–325. [CrossRef] [Google Scholar]
  19. M.A. Murad and A.F.D. Loula, Improved accuracy in finite element analysis of Biot’s consolidation problem. Comput. Methods Appl. Mech. Eng. 95 (1992) 359–382. [CrossRef] [Google Scholar]
  20. M.A. Murad and A.F.D. Loula, On stability and convergence of finite element approximations of Biot’s consolidation problem. Int. J. Numer. Methods Eng. 37 (1994) 645–667. [Google Scholar]
  21. M.A. Murad, V. Thomée and A.F.D. Loula, Asymptotic behavior of semidiscrete finite-element approximations of Biot’s consolidation problem. SIAM J. Numer. Anal. 33 (1996) 1065–1083. [CrossRef] [MathSciNet] [Google Scholar]
  22. R.W. Lewis and B.A. Schrefler, The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media. Wiley, New York (1998). [Google Scholar]
  23. P.J. Phillips and M.F. Wheeler, A coupling of mixed and continuous Galerkin finite element methods for poroelasticity I: the continuous in time case. Comput. Geosci. 11 (2007) 131–144. [Google Scholar]
  24. P.J. Phillips and M.F. Wheeler, A coupling of mixed and continuous Galerkin finite element methods for poroelasticity II: the discrete-in-time case. Comput. Geosci. 11 (2007) 145–158. [CrossRef] [MathSciNet] [Google Scholar]
  25. P.J. Phillips and M.F. Wheeler, Overcoming the problem of locking in linear elasticity and poroelasticity: an heuristic approach. Comput. Geosci. 13 (2009) 5–12. [Google Scholar]
  26. S.Y. Yi, A study of two modes of locking in poroelasticity. SIAM J. Numer. Anal. 55 (2017) 1915–1936. [CrossRef] [MathSciNet] [Google Scholar]
  27. C. Rodrigo, F.J. Gaspar, X. Hu and L.T. Zikatanov, Stability and monotonicity for some discretizations of the Biot’s consolidation model. Comput. Methods Appl. Mech. Eng. 298 (2016) 183–204. [Google Scholar]
  28. S.Y. Yi, A coupling of nonconforming and mixed finite element methods for Biot’s consolidation model. Numer. Methods Part. Differ. Equ. 29 (2013) 1749–1777. [CrossRef] [Google Scholar]
  29. X. Hu, C. Rodrigo, F.J. Gaspar and L.T. Zikatanov, A nonconforming finite element method for the Biot’s consolidation model in poroelasticity. J. Comput. Appl. Math. 310 (2017) 143–154. [Google Scholar]
  30. B. Rivière, J. Tan and T. Thompson, Error analysis of primal discontinuous Galerkin methods for a mixed formulation of the Biot equations. Comput. Math. Appl. 73 (2017) 666–683. [Google Scholar]
  31. P.J. Phillips and M.F. Wheeler, A coupling of mixed and discontinuous Galerkin finite element methods for poroelasticity. Comput. Geosci. 12 (2008) 417–435. [Google Scholar]
  32. M. Sun and H.X. Rui, A coupling of weak Galerkin and mixed finite element methods for poroelasticity. Comput. Math. Appl. 73 (2017) 804–823. [MathSciNet] [Google Scholar]
  33. J. Wan, Stabilized finite element methods for coupled geomechanics and multiphase flow. Ph.D. thesis, Stanford University (2002). [Google Scholar]
  34. L. Berger, R. Bordas, D. Kay and S. Tavener, Stabilized lowest-order finite element approximation for linear three-field poroelasticity. SIAM J. Sci. Comput. 37 (2015) A2222–A2245. [Google Scholar]
  35. J.A. White and R.I. Borja, Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their application to fault zone transients. Comput. Methods Appl. Mech. Eng. 197 (2008) 4353–4366. [Google Scholar]
  36. D. Boffi, M. Botti and D.A. Di Pietro, A nonconforming high-order method for the Biot problem on general meshes. SIAM J. Sci. Comput. 38 (2016) A1508–A1537. [Google Scholar]
  37. R. Oyarzú and R. Ruiz-Baier, Locking-free finite element methods for poroelasticity. SIAM J. Numer. Anal. 54 (2016) 2951–2973. [CrossRef] [MathSciNet] [Google Scholar]
  38. F.Z. Gao, A high-order HDG method for the Biot’s consolidation model. Comput. Math. Appl. 77 (2019) 237–252. [MathSciNet] [Google Scholar]
  39. M.F. Wheeler, G. Xue and I. Yotov, Coupling multipoint flux mixed finite element methods with continuous Galerkin methods for poroelasticity. Comput. Geosci. 18 (2014) 57–75. [Google Scholar]
  40. J. Korsawe and G. Starke, A least-squares mixed finite element method for Biot’s consolidation problem in porous media. SIAM J. Numer. Anal. 43 (2005) 318–339. [CrossRef] [MathSciNet] [Google Scholar]
  41. L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini and A. Russo, Basic principles of virtual element methods. Math. Mod. Meth. Appl. Sci. 23 (2013) 199–214. [CrossRef] [Google Scholar]
  42. L. Beirão da Veiga, F. Brezzi, L.D. Marini and A. Russo, The hitchhiker’s guide to the virtual element method. Math. Mod. Meth. Appl. Sci. 24 (2014) 1541–1573. [CrossRef] [Google Scholar]
  43. L. Beirão da Veiga and G. Manzini, A virtual element method with arbitrary regularity. IMA J. Numer. Anal. 34 (2014) 759–781. [CrossRef] [MathSciNet] [Google Scholar]
  44. B. Ayuso de Dios, K. Lipnikov and G. Manzini, The nonconforming virtual element method. ESAIM: Math. Model. Numer. Anal. 50 (2016) 879–904. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  45. L. Beirão da Veiga, F. Brezzi, L.D. Marini and A. Russo, H(div) and H(curl)-conforming virtual element methods. Numer. Math. 133 (2016) 303–332. [CrossRef] [MathSciNet] [Google Scholar]
  46. F. Brezzi, R.S. Falk and L.D. Marini, Basic principles of mixed virtual element methods. ESAIM: Math. Model. Numer. Anal. 48 (2014) 1227–1240. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  47. L. Beirão da Veiga, F. Brezzi and L.D. Marini, Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51 (2013) 794–812. [Google Scholar]
  48. A.L. Gain, C. Talischi and G.H. Paulino, On the virtual element method for three-dimensional elasticity problems on arbitrary polyhedral meshes. Comput. Methods Appl. Mech. Eng. 282 (2014) 132–160. [CrossRef] [Google Scholar]
  49. E. Artioli, L. Beirão da Veiga, C. Lovadina and E. Sacco, Arbitrary order 2D virtual elements for polygonal meshes: part I, elastic problem. Comput. Mech. 60 (2017) 355–377. [CrossRef] [MathSciNet] [Google Scholar]
  50. P.F. Antonietti, L. Beirão da Veiga, D. Mora and M. Verani, A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52 (2014) 386–404. [Google Scholar]
  51. X. Liu, R. Li and Y.F. Nie, A divergence-free reconstruction of the nonconforming virtual element method for the Stokes problem, Comput. Methods Appl. Mech. Eng. 372 (2020) 113351. [CrossRef] [Google Scholar]
  52. F. Brezzi and L.D. Marini, Virtual element method for plate bending problems. Comput. Methods Appl. Mech. Eng. 253 (2012) 455–462. [Google Scholar]
  53. P.F. Antonietti, G. Manzini and M. Verani, The fully nonconforming virtual element method for biharmonic problems. Math. Models Methods Appl. Sci. 28 (2018) 387–407. [Google Scholar]
  54. M.F. Benedetto, S. Berrone, S. Pieraccini and S. Scialò, The virtual element method for discrete fracture network simulations. Comput. Methods Appl. Mech. Eng. 280 (2014) 135–156. [CrossRef] [Google Scholar]
  55. S. Berrone, M.F. Benedetto, A. Borio, S. Pieraccini and S. Scialò, The virtual element method for large scale discrete fracture network simulations: fracture-independent mesh generation. Proc. Appl. Math. Mech. 15 (2015) 19–22. [CrossRef] [Google Scholar]
  56. P.F. Antonietti, L. Beirão da Veiga, S. Scacchi and M. Verani, A C1 virtual element method for the Cahn-Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54 (2016) 34–56. [Google Scholar]
  57. X. Liu, Z.K. He and Z. Chen, A fully discrete virtual element scheme for the Cahn-Hilliard equation in mixed form. Comput. Phys. Commun. 246 (2020) 106870. [CrossRef] [MathSciNet] [Google Scholar]
  58. J.K. Zhao, B. Zhang, S.P. Mao and S.C. Chen, The divergence-free nonconforming virtual element for the Stokes problem. SIAM J. Numer. Anal. 57 (2019) 2730–2759. [CrossRef] [MathSciNet] [Google Scholar]
  59. X.L. Tang, Z.B. Liu, B.J. Zhang and M.F. Feng, On the locking-free three-field virtual element methods for Biot’s consolidation model in poroelasticity. ESAIM. Math. Model. Numer. Anal. 55 (2021) S909–S939. [CrossRef] [EDP Sciences] [Google Scholar]
  60. L. Beirão da Veiga, F. Brezzi, L.D. Marini and A. Russo, Virtual element methods for general second order elliptic problems on polygonal meshes. Math. Mod. Meth. Appl. Sci. 26 (2016) 729–750. [CrossRef] [Google Scholar]
  61. L. Beirão da Veiga, L. Mascotto and J. Meng, Interpolation and stability estimates for edge and face virtual elements of general order. Math. Models Methods Appl. Sci. 32 (2022) 1589–1632. [CrossRef] [MathSciNet] [Google Scholar]
  62. J.K. Zhao, B. Zhang, S.P. Mao and S.C. Chen, The nonconforming virtual element method for the Darcy-Stokes problem. Comput. Methods Appl. Mech. Eng. 370 (2020) 113251. [CrossRef] [Google Scholar]
  63. K. Mardal and R. Winther, An observation on Korn’s inequality for nonconforming finite element methods. Math. Comput. 75 (2005) 1–6. [CrossRef] [Google Scholar]
  64. S.C. Brenner, Korn’s inequalities for piecewise H1 vector fields. Math. Comput. 73 (2004) 1067–1087. [Google Scholar]
  65. X. Liu and Z. Chen, Coupling of mixed and conforming virtual element approximations for three-field poroelasticity. submitted. [Google Scholar]
  66. S. Barry and G. Mercer, Exact solution for two-dimensional time dependent flow and deformation within a poroelastic medium. J. Appl. Mech. 66 (1999) 536–540. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you