Open Access
Issue
ESAIM: M2AN
Volume 57, Number 5, September-October 2023
Page(s) 2931 - 2976
DOI https://doi.org/10.1051/m2an/2023068
Published online 19 September 2023
  1. M.M. Amin, M.H. Khiadani (Hajian), A. Fatehizadeh and E. Taheri, Validation of linear and non-linear kinetic modeling of saline wastewater treatment by sequencing batch reactor with adapted and non-adapted consortiums. Desalination 344 (2014) 228–235. [CrossRef] [Google Scholar]
  2. S. Berres, R. Bürger, K.H. Karlsen and E.M. Tory, Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression. SIAM J. Appl. Math. 64 (2003) 41–80. [Google Scholar]
  3. S. Boscarino, R. Bürger, P. Mulet, G. Russo and L.M. Villada, Linearly implicit IMEX Runge-Kutta methods for a class of degenerate convection-diffusion problems. SIAM J. Sci. Comput. 37 (2015) B305–B331. [CrossRef] [Google Scholar]
  4. M. Breu, A theory of implicit methods for scalar conservation laws. In Hyperbolic Problems: Theory, Numerics, Applications. Springer, Berlin (2003) 377–386. [CrossRef] [Google Scholar]
  5. M. Breu, The implicit upwind method for 1-D scalar conservation laws with continuous fluxes. SIAM J. Numer. Anal. 43 (2005) 970–986. [CrossRef] [MathSciNet] [Google Scholar]
  6. M. Breu and A. Kleefeld, Implicit monotone difference methods for scalar conservation laws with source terms. Acta Math. Vietnam. 45 (2020) 709–738. [CrossRef] [MathSciNet] [Google Scholar]
  7. R. Bürger, F. Concha and K.H. Karlsen, Phenomenological model of filtration processes: 1. Cake formation and expression. Chem. Eng. Sci. 56 (2001) 4537–4553. [CrossRef] [Google Scholar]
  8. R. Bürger, H. Frid and K.H. Karlsen, On a free boundary problem for a strongly degenerate quasi-linear parabolic equation with an application to a model of pressure filtration. SIAM J. Math. Anal. 34 (2002) 611–635. [CrossRef] [MathSciNet] [Google Scholar]
  9. R. Bürger, K.H. Karlsen and J.D. Towers, A model of continuous sedimentation of flocculated suspensions in clarifier-thickener units. SIAM J. Appl. Math. 65 (2005) 882–940. [Google Scholar]
  10. R. Bürger, A. Coronel and M. Sepúlveda, A semi-implicit monotone difference scheme for an initial-boundary value problem of a strongly degenerate parabolic equation modeling sedimentation-consolidation processes. Math. Comp. 75 (2006) 91–112. [Google Scholar]
  11. R. Bürger, S. Diehl and I. Nopens, A consistent modelling methodology for secondary settling tanks in wastewater treatment. Water Res. 45 (2011) 2247–2260. [CrossRef] [Google Scholar]
  12. R. Bürger, J. Careaga, S. Diehl, C. Mejías, I. Nopens, E. Torfs and P.A. Vanrolleghem, Simulations of reactive settling of activated sludge with a reduced biokinetic model. Comput. Chem. Eng. 92 (2016) 216–229. [CrossRef] [Google Scholar]
  13. R. Bürger, S. Diehl and C. Mejías, A difference scheme for a degenerating convection-diffusion-reaction system modelling continuous sedimentation. ESAIM: Math. Model. Numer. Anal. 52 (2018) 365–392. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  14. R. Bürger, J. Careaga and S. Diehl, A method-of-lines formulation for a model of reactive settling in tanks with varying cross-sectional area. IMA J. Appl. Math. 86 (2021) 514–546. [CrossRef] [MathSciNet] [Google Scholar]
  15. R. Bürger, J. Careaga, S. Diehl and R. Pineda, A moving-boundary model of reactive settling in wastewater treatment. Part 1: Governing equations. Appl. Math. Model. 106 (2022) 390–401. [CrossRef] [MathSciNet] [Google Scholar]
  16. R. Bürger, J. Careaga, S. Diehl and R. Pineda, A moving-boundary model of reactive settling in wastewater treatment. Part 2: Numerical scheme. Appl. Math. Model. 111 (2022) 247–269. [CrossRef] [MathSciNet] [Google Scholar]
  17. R. Bürger, S. Diehl, M.C. Martí and Y. Vásquez, A degenerating convection-diffusion system modelling froth flotation with drainage. IMA J. Appl. Math. 87 (2022) 1151–1190. [CrossRef] [MathSciNet] [Google Scholar]
  18. R. Bürger, J. Careaga, S. Diehl and R. Pineda, A model of reactive settling of activated sludge: Comparison with experimental data. Chem. Eng. Sci. 267 (2023) 118244. [CrossRef] [Google Scholar]
  19. R. Bürger, S. Diehl, M.C. Martí and Y. Vásquez, A difference scheme for a triangular system of conservation laws with discontinuous flux modeling three-phase flows. Netw. Heterog. Media 18 (2023) 140–190. [Google Scholar]
  20. M. Caluwé, D. Daens, R. Blust, L. Geuens and J. Dries, The sequencing batch reactor as an excellent configuration to treat wastewater from the petrochemical industry. Water Sci. Tech. 75 (2016) 793–801. [Google Scholar]
  21. G. Chen, M.C.M. van Loosdrecht, G.A. Ekama and D. Brdjaniovic, Biological Wastewater Treatment, 2nd edition. IWA Publishing, London, UK (2020). [Google Scholar]
  22. G.M. Coclite, S. Mishra and N.H. Risebro, Convergence of an Engquist-Osher scheme for a multi-dimensional triangular system of conservation laws. Math. Comput. 79 (2010) 71–94. [CrossRef] [Google Scholar]
  23. R. Courant, K. Friedrichs and H. Lewy, Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100 (1928) 32–74. [Google Scholar]
  24. K. Deimling, Nonlinear Functional Analysis. Springer-Verlag, Berlin (1985). [Google Scholar]
  25. S. Diehl, Continuous sedimentation of multi-component particles. Math. Meth. Appl. Sci. 20 (1997) 1345–1364. [CrossRef] [Google Scholar]
  26. R. Droste and R. Gear, Theory and Practice of Water and Wastewater Treatment, 2nd edition. Wiley, Hoboken, NJ, USA (2019). [Google Scholar]
  27. B. Engquist and S. Osher, One-sided difference approximations for nonlinear conservation laws. Math. Comput. 36 (1981) 321–351. [CrossRef] [Google Scholar]
  28. S. Evje and K.H. Karlsen, Degenerate convection-diffusion equations and implicit monotone difference schemes. In Hyperbolic Problems: Theory, Numerics, Applications, Vol. I (Zürich, 1998), Vol. 129 of Internat. Ser. Numer. Math. Birkhäuser, Basel (1999) 285–294. [CrossRef] [Google Scholar]
  29. R. Eymard, T. Gallouët and R. Herbin, Finite volume methods. In Handbook of Numerical Analysis, Vol. VII, Handb. Numer. Anal., VII, North-Holland, Amsterdam (2000) 713–1020. [Google Scholar]
  30. M. Henze, W. Gujer, T. Mino and M.C.M. van Loosdrecht, Activated Sludge Models ASM1, ASM2, ASM2d and ASM3. IWA Scientific and Technical Report No. 9. IWA Publishing, London, UK (2000). [Google Scholar]
  31. J.S. Hesthaven, Numerical methods for conservation Laws. In Vol. 18 of Computational Science & Engineering. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2018). [Google Scholar]
  32. H. Holden, K.H. Karlsen and N.H. Risebro, On uniqueness and existence of entropy solutions of weakly coupled systems of nonlinear degenerate parabolic equations. Electron. J. Differ. Equ. 2003 (2003) 46. [Google Scholar]
  33. Z. Hu, R.A. Ferraina, J.F. Ericson, A.A. MacKay and B.F. Smets, Biomass characteristics in three sequencing batch reactors treating a wastewater containing synthetic organic chemicals. Water Res. 39 (2005) 710–720. [CrossRef] [Google Scholar]
  34. W. Hundsdorfer and J. Verwer, Numerical solution of time-dependent advection-diffusion-reaction equations, In Vol. 33 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (2003). [CrossRef] [Google Scholar]
  35. Y. Jiang and Z. Xu, Parametrized maximum principle preserving limiter for finite difference WENO schemes solving convectiondominated diffusion equations. SIAM J. Sci. Comput. 35 (2013) A2524–A2553. [CrossRef] [Google Scholar]
  36. K.H. Karlsen and J.D. Towers, Convergence of monotone schemes for conservation laws with zero-flux boundary conditions. Adv. Appl. Math. Mech. 9 (2017) 515–542. [Google Scholar]
  37. G. Kirim, E. Torfs and P.A. Vanrolleghem, An improved 1d reactive BürgerDiehl settler model for secondary settling tank denitrification. Water Environ. Res. 94 (2022) e10825. [Google Scholar]
  38. R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002). [Google Scholar]
  39. J. Makinia and E. Zaborowska, Mathematical Modelling and Computer Simulation of Activated Sludge Systems, 2nd edition. IWA Publishing, London, UK (2020). [CrossRef] [Google Scholar]
  40. L. Metcalf and H.P. Eddy, Wastewater Engineering. Treatment and Resource Recovery, 5th edition. McGraw-Hill, New York, USA (2014). [Google Scholar]
  41. T. Popple, J. Williams, E. May, G. Mills and R. Oliver, Evaluation of a sequencing batch reactor sewage treatment rig for investigating the fate of radioactively labelled pharmaceuticals: Case study of propranolol. Water Res. 88 (2016) 83–92. [CrossRef] [Google Scholar]
  42. B. Song, Z. Tian, R. van der Weijden, C. Buisman and J. Weijma, High-rate biological selenate reduction in a sequencing batch reactor for recovery of hexagonal selenium. Water Res. 193 (2021) 116855. [CrossRef] [Google Scholar]
  43. E. Torfs, S. Balemans, F. Locatelli, S. Diehl, R. Bürger, J. Laurent, P. François and I. Nopens, On constitutive functions for hindered settling velocity in 1-d settler models: Selection of appropriate model structure. Water Res. 110 (2017) 38–47. [CrossRef] [Google Scholar]
  44. S. Wang and C.K. Gunsch, Effects of selected pharmaceutically active compounds on treatment performance in sequencing batch reactors mimicking wastewater treatment plants operations. Water Res. 45 (2011) 3398–3406. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you