Open Access
Issue
ESAIM: M2AN
Volume 57, Number 6, November-December 2023
Page(s) 3303 - 3334
DOI https://doi.org/10.1051/m2an/2023075
Published online 29 November 2023
  1. D. Adak, D. Mora, S. Natarajan and A. Silgado, A virtual element discretization for the time dependent Navier-Stokes equations in stream-function formulation. ESAIM: Math. Model. Numer. Anal. 55 (2021) 2535–2566. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  2. D. Adak, D. Mora and S. Natarajan, Convergence analysis of virtual element method for nonlinear nonlocal dynamic plate equation. J. Sci. Comput. 91 (2022) 1–37. [CrossRef] [Google Scholar]
  3. D. Adak, D. Mora and A. Silgado, A Morley-type virtual element approximation for a wind-driven ocean circulation model on polygonal meshes. J. Comput. Appl. Math. 425 (2023) 115026. [CrossRef] [Google Scholar]
  4. R.A. Adams and J.J.F. Fournier, Sobolev Spaces. Pure and Applied Mathematics, 2 edition. Academic Press (2003). [Google Scholar]
  5. J. Aghili and D.A. Di Pietro, An advection-robust hybrid high-order method for the Oseen problem. J. Sci. Comput. 77 (2018) 1310–1338. [CrossRef] [MathSciNet] [Google Scholar]
  6. N. Ahmed, G.R. Barrenechea, E. Burman, J. Guzmán, A. Linke and C. Merdon, A pressure-robust discretization of Oseen’s equation using stabilization in the vorticity equation. SIAM J. Numer. Anal. 59 (2021) 2746–2774. [CrossRef] [MathSciNet] [Google Scholar]
  7. V. Anaya, A. Bouharguane, D. Mora, C. Reales, R. Ruiz-Baier, N. Seloula and H. Torres, Analysis and approximation of a vorticity–velocity–pressure formulation for the Oseen equations. J. Sci. Comput. 80 (2019) 1577–1606. [CrossRef] [MathSciNet] [Google Scholar]
  8. P.F. Antonietti, L. Beirão da Veiga, D. Mora and M. Verani, A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52 (2014) 386–404. [Google Scholar]
  9. P.F. Antonietti, G. Manzini and M. Verani, The fully nonconforming virtual element method for biharmonic problems. Math. Models Methods Appl. Sci. 28 (2018) 387–407. [Google Scholar]
  10. P.F. Antonietti, L. Beirão da Veiga and G. Manzini, editors The Virtual Element Method and its Applications. Vol. 31 of SEMA SIMAI Springer Series. Springer Nature, Switzerland AG (2022). [CrossRef] [Google Scholar]
  11. B. Ayuso de Dios, K. Lipnikov and G. Manzini, The non-conforming virtual element method. ESAIM Math. Model. Numer. 50 (2016) 879–904. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  12. G.R. Barrenechea and A. Wachtel, Stabilised finite element methods for the Oseen problem on anisotropic quadrilateral meshes. ESAIM Math. Model. Numer. 52 (2018) 99–122. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  13. T.P. Barrios, J.M. Cascón and M. González, Augmented mixed finite element method for the Oseen problem: a priori and a posteriori error analyses. Comput. Methods Appl. Mech. Eng. 313 (2017) 216–238. [CrossRef] [Google Scholar]
  14. L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini and A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. [Google Scholar]
  15. L. Beirão da Veiga, F. Brezzi, L.D. Marini and A. Russo, Virtual element method for general second-order elliptic problems on polygonal meshes. Math. Models Methods Appl. Sci. 26 (2016) 729–750. [Google Scholar]
  16. L. Beirão da Veiga, C. Lovadina and G. Vacca, Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM: Math. Model. Numer. Anal. 51 (2017) 509–535. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  17. L. Beirão da Veiga, C. Lovadina and G. Vacca, Virtual elements for the Navier-Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 56 (2018) 1210–1242. [Google Scholar]
  18. L. Beirão da Veiga, D. Mora and G. Vacca, The Stokes complex for virtual elements with application to Navier-Stokes flows. J. Sci. Comput. 81 (2019) 990–1018. [CrossRef] [MathSciNet] [Google Scholar]
  19. L. Beirão da Veiga, A. Russo and G. Vacca, The virtual element method with curved edges. ESAIM: Math. Model. Numer. Anal. 53 (2019) 375–404. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  20. L. Beirão da Veiga, F. Brezzi, L.D. Marini and A. Russo, Polynomial preserving virtual elements with curved edges. Math. Models Methods Appl. Sci. 30 (2020) 1555–1590. [CrossRef] [MathSciNet] [Google Scholar]
  21. L. Beirão da Veiga, F. Dassi and G. Vacca, The Stokes complex for virtual elements in three dimensions. Math. Models Methods Appl. Sci. 30 (2020) 477–512. [CrossRef] [MathSciNet] [Google Scholar]
  22. L. Beirão da Veiga, F. Dassi and G. Vacca, Vorticity-stabilized virtual elements for the Oseen equation. Math. Models Methods Appl. Sci. 31 (2021) 3009–3052. [CrossRef] [MathSciNet] [Google Scholar]
  23. L. Beirão da Veiga, F. Dassi, G. Manzini and L. Mascotto, The virtual element method for the 3D resistive magnetohydrodynamic model. Math. Models Methods Appl. Sci. 33 (2023) 643–686. [CrossRef] [MathSciNet] [Google Scholar]
  24. L. Beirão da Veiga, L. Mascotto and J. Meng, Stability and interpolation properties for Stokes-like virtual element spaces. J. Sci. Comput. 94 (2023) 56. [CrossRef] [Google Scholar]
  25. H. Blum, R. Rannacher and R. Leis, On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Method Appl. Sci. 2 (1980) 556–581. [CrossRef] [Google Scholar]
  26. M. Braack, E. Burman, V. John and G. Lube, Stabilized finite element methods for the generalized Oseen problem. Comput. Methods Appl. Mech. Eng. 196 (2007) 853–866. [CrossRef] [Google Scholar]
  27. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. . Vol. 15 of Texts in Applied Mathematics , 3rd edition. Springer, New York (2008). [CrossRef] [Google Scholar]
  28. S.C. Brenner and L.-Y. Sung, Virtual element methods on meshes with small edges or faces. Math. Models Methods Appl. Sci. 28 (2018) 1291–1336. [Google Scholar]
  29. S.C. Brenner, L. Sung, H. Zhang and Y. Zhang, A Morley finite element method for the displacement obstacle problem of clamped Kirchhoff plates. J. Comput. Appl. Math. 254 (2013) 31–42. [CrossRef] [MathSciNet] [Google Scholar]
  30. A.N. Brooks and T.J.R. Hughes, Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32 (1982) 199–259. [CrossRef] [Google Scholar]
  31. E. Burman, A. Ern and M.A. Fernández, Fractional-step methods and finite elements with symmetric stabilization for the transient Oseen problem. ESAIM: Math. Model. Numer. Anal. 51 (2017) 487–507. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  32. A. Cangiani, V. Gyrya and G. Manzini, The non-conforming virtual element method for the Stokes equations. SIAM J. Numer. Anal. 54 (2016) 3411–3435. [CrossRef] [MathSciNet] [Google Scholar]
  33. C. Carstensen, R. Khot and A.K. Pani, Nonconforming virtual elements for the biharmonic equation with Morley degrees of freedom on polygonal meshes. Preprint: arxiv:2205.08764 [math.NA]. [Google Scholar]
  34. C. Carstensen, R. Khot and A.K. Pani, A priori and a posteriori error analysis of the lowest-order NCVEM for second-order linear indefinite elliptic problems. Numer. Math. 151 (2022) 551–600. [CrossRef] [MathSciNet] [Google Scholar]
  35. M.E. Cayco and R.A. Nicolaides, Finite element technique for optimal pressure recovery from stream function formulation of viscous flows. Math. Comput. 46 (1986) 371–377. [CrossRef] [Google Scholar]
  36. M.E. Cayco and R.A. Nicolaides, Analysis of nonconforming stream function and pressure finite element spaces for the Navier-Stokes equations. Comput. Math. Appl. 18 (1989) 745–760. [CrossRef] [MathSciNet] [Google Scholar]
  37. O. Certik, F. Gardini, G. Manzini and G. Vacca, The virtual element method for eigenvalue problems with potential terms on polytopic meshes. Appl. Math. 63 (2018) 333–365. [CrossRef] [MathSciNet] [Google Scholar]
  38. O. Certik, F. Gardini, G. Manzini, L. Mascotto and G. Vacca, The p- and hp-versions of the virtual element method for elliptic eigenvalue problems. Comput. Math. Appl. 79 (2020) 2035–2066. [CrossRef] [MathSciNet] [Google Scholar]
  39. L. Chen and X. Huang, Nonconforming virtual element method for 2mth order partial differential equations in ℝn. Math. Comput. 89 (2020) 1711–1744. [Google Scholar]
  40. A. Chernov, C. Marcati and L. Mascotto, p- and hp-virtual elements for the stokes problem. Adv. Comput. Math. 47 (2021) 1–31. [CrossRef] [Google Scholar]
  41. F. Gardini, G. Manzini and G. Vacca, The nonconforming virtual element method for eigenvalue problems. ESAIM: Math. Model. Numer. Anal. 53 (2019) 749–774. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  42. T. Gudi, A new error analysis for discontinuous finite element methods for linear elliptic problems. Math. Comput. 79 (2010) 2169–2189. [Google Scholar]
  43. J. Huang and Y. Yu, A medius error analysis for nonconforming virtual element methods for Poisson and biharmonic equations. J. Comput. Appl. Math. 386 (2021) 113229. [CrossRef] [Google Scholar]
  44. M. Li, J. Zhao, C. Huang and S. Chen, Conforming and nonconforming vems for the fourth-order reaction–subdiffusion equation: a unified framework. IMA J. Numer. Anal. 42 (2022) 2238–2300. [CrossRef] [MathSciNet] [Google Scholar]
  45. G. Manzini and A. Mazzia, Conforming virtual element approximations of the two-dimensional Stokes problem. Appl. Numer. Math. 181 (2022) 176–203. [CrossRef] [MathSciNet] [Google Scholar]
  46. G. Manzini and A. Mazzia, A virtual element generalization on polygonal meshes of the Scott-Vogelius finite element method for the 2-D Stokes problem. J. Comput. Dyn. 9 (2022) 207–238. [CrossRef] [MathSciNet] [Google Scholar]
  47. D. Mora, C. Reales and A. Silgado, AC 1-virtual element method of high order for the Brinkman equations in stream function formulation with pressure recovery. IMA J. Numer. Anal. 42 (2022) 3632–3674. [CrossRef] [MathSciNet] [Google Scholar]
  48. D. Mora and A. Silgado, Virtual element methods for a stream-function formulation of the Oseen equations, in The Virtual Element Method and its Applications. Springer International Publishing, Cham (2022) 321–361. [CrossRef] [Google Scholar]
  49. T. Sorgente, S. Biasotti, G. Manzini and M. Spagnuolo, The role of mesh quality and mesh quality indicators in the virtual element method. Adv. Comput. Math. 48 (2021) 3. [Google Scholar]
  50. T. Sorgente, D. Prada, D. Cabiddu, S. Biasotti, G. Patane, M. Pennacchio, S. Bertoluzza, G. Manzini and M. Spagnuolo, VEM and the Mesh. Vol. 31 of SEMA SIMAI Springer Series, Chapter 1. Springer Nature, Switzerland AG (2021) 1–54. [Google Scholar]
  51. T. Sorgente, S. Biasotti, G. Manzini and M. Spagnuolo, Polyhedral mesh quality indicator for the virtual element method. Comput. Math. Appl. 114 (2022) 151–160. [CrossRef] [MathSciNet] [Google Scholar]
  52. G. Vacca, An H1-conforming virtual element for Darcy and Brinkman equations. Math. Models Methods Appl. Sci. 28 (2018) 159–194. [CrossRef] [MathSciNet] [Google Scholar]
  53. J. Zhao, S. Chen and B. Zhang, The nonconforming virtual element method for plate bending problems. Math. Models Methods Appl. Sci. 26 (2016) 1671–1687. [CrossRef] [MathSciNet] [Google Scholar]
  54. J. Zhao, B. Zhang, S. Chen and S. Mao, The Morley-type virtual element for plate bending problems. J. Sci. Comput. 76 (2018) 610–629. [Google Scholar]
  55. J. Zhao, B. Zhang, S. Mao and S. Chen, The divergence-free nonconforming virtual element for the Stokes problem. SIAM J. Numer. Anal. 57 (2019) 2730–2759. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you