Open Access
Issue
ESAIM: M2AN
Volume 57, Number 6, November-December 2023
Page(s) 3275 - 3302
DOI https://doi.org/10.1051/m2an/2023071
Published online 29 November 2023
  1. H. Abels, G. Dolzmann and Y. Liu, Well-posedness of a fully coupled Navier–Stokes/Q-tensor system with inhomogeneous boundary data. SIAM J. Math. Anal. 46 (2014) 3050–3077. [CrossRef] [MathSciNet] [Google Scholar]
  2. H. Abels, G. Dolzmann and Y. Liu, Strong solutions for the Beris-Edwards model for nematic liquid crystals with homogeneous Dirichlet boundary conditions. Adv. Differ. Equ. 21 (2016) 109–152. [Google Scholar]
  3. D. Andrienko, Introduction to liquid crystals. J. Mol. Liq. 267 (2018) 520–541. Special Issue Dedicated to the Memory of Professor Y. Reznikov. [CrossRef] [Google Scholar]
  4. I. Bajc, F. Hecht and S. Zumer, A mesh adaptivity scheme on the Landau–de Gennes functional minimization case in 3D, and its driving efficiency. J. Comput. Phys. 321 (2016) 981–996. [CrossRef] [MathSciNet] [Google Scholar]
  5. J.M. Ball, Mathematics and liquid crystals. Mol. Cryst. Liq. Cryst. 647 (2017) 1–27. [CrossRef] [Google Scholar]
  6. S. Bartels and A. Raisch, Simulation of Q-tensor fields with constant orientational order parameter in the theory of uniaxial nematic liquid crystals, in Singular Phenomena and Scaling in Mathematical Models. Springer International Publishing, Cham (2013) 383–412. [Google Scholar]
  7. A. Beris and B. Edwards, Thermodynamics of Flowing Systems: With Internal Microstructure. Oxford Engineering Science Series. Oxford University Press (1994). [Google Scholar]
  8. J.P. Borthagaray, R.H. Nochetto and S.W. Walker, A structure-preserving FEM for the uniaxially constrained Q-tensor model of nematic liquid crystals. Numer. Math. 145 (2020) 837–881. [CrossRef] [MathSciNet] [Google Scholar]
  9. F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models. Vol. 183. Springer Science & Business Media (2012). [Google Scholar]
  10. C. Cavaterra, E. Rocca, H. Wu and X. Xu, Global strong solutions of the full Navier-Stokes and Q-tensor system for nematic liquid crystal flows in two dimensions. SIAM J. Math. Anal. 48 (2016) 1368–1399. [CrossRef] [MathSciNet] [Google Scholar]
  11. A.J. Chorin, The numerical solution of the Navier-Stokes equations for an incompressible fluid. Bull. Am. Math. Soc. 73 (1967) 928–931. [CrossRef] [Google Scholar]
  12. P. Constantin and C. Foias, Navier-Stokes Equations. University of Chicago Press, Chicago (2022). [Google Scholar]
  13. K.R. Daly, G. D’Alessandro and M. Kaczmarek, An efficient Q-tensor-based algorithm for liquid crystal alignment away from defects. SIAM J. Appl. Math. 70 (2010) 2844–2860. [CrossRef] [MathSciNet] [Google Scholar]
  14. T.A. Davis and E.C. Gartland, Finite element analysis of the Landau–de Gennes minimization problem for liquid crystals. SIAM J. Numer. Anal. 35 (1998) 336–362. [CrossRef] [MathSciNet] [Google Scholar]
  15. P. de Gennes and J. Prost, The Physics of Liquid Crystals. International Series of Monographs on Physics. Clarendon Press, Oxford (1993). [Google Scholar]
  16. J.L. Ericksen, Hydrostatic theory of liquid crystals. Arch. Ration. Mech. Anal. 9 (1962) 371–378. [CrossRef] [Google Scholar]
  17. L.C. Evans, Partial Differential Equations. American Mathematical Society, Providence, RI (2010). [Google Scholar]
  18. G.B. Folland, Real Analysis: Modern Techniques and Their Applications. Wiley, New York (1984). [Google Scholar]
  19. P. Grisvard, Elliptic Problems in Nonsmooth Domains. Society for Industrial and Applied Mathematics (2011). [CrossRef] [Google Scholar]
  20. V.M. Gudibanda, F. Weber and Y. Yue, Convergence analysis of a fully discrete energy-stable numerical scheme for the Q-tensor flow of liquid crystals. SIAM J. Numer. Anal. 60 (2022) 2150–2181. [CrossRef] [MathSciNet] [Google Scholar]
  21. F. Guillén-González and M. Ángeles Rodríguez-Bellido, Weak time regularity and uniqueness for a Q-tensor model. SIAM J. Math. Anal. 46 (2014) 3540–3567. [CrossRef] [MathSciNet] [Google Scholar]
  22. F. Guillén-González and M.Á. Rodríguez-Bellido, Weak solutions for an initial–boundary Q-tensor problem related to liquid crystals. Nonlinear Anal. Theory Methods App. 112 (2015) 84–104. [CrossRef] [Google Scholar]
  23. F. Guillén-González and G. Tierra, On linear schemes for a Cahn-Hilliard diffuse interface model. J. Comput. Phys. 234 (2013) 140–171. [CrossRef] [MathSciNet] [Google Scholar]
  24. C. Jiang, W. Cai and Y. Wang, A linearly implicit and local energy-preserving scheme for the sine-Gordon equation based on the invariant energy quadratization approach. J. Sci. Comput. 80 (2019) 1629–1655. [CrossRef] [MathSciNet] [Google Scholar]
  25. F.M. Leslie, Some constitutive equations for anisotropic fluids. Q. J. Mech. Appl. Math. 19 (1966) 357–370. [CrossRef] [Google Scholar]
  26. F.M. Leslie, Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 28 (1968) 265–283. [CrossRef] [Google Scholar]
  27. F. Lin and C. Liu, Static and dynamic theories of liquid crystals. J. Part. Differ. Equ. 14 (2001) 289–330. [Google Scholar]
  28. C.S. MacDonald, J.A. Mackenzie, A. Ramage and C.J.P. Newton, Efficient moving mesh methods for Q-tensor models of nematic liquid crystals. SIAM J. Sci. Comput. 37 (2015) B215–B238. [CrossRef] [Google Scholar]
  29. A. Majumdar, Equilibrium order parameters of nematic liquid crystals in the Landau–de Gennes theory. Eur. J. Appl. Math. 21 (2010) 181–203. [CrossRef] [Google Scholar]
  30. A. Majumdar and A. Zarnescu, Landau–de Gennes theory of nematic liquid crystals: the Oseen-Frank limit and beyond. Arch. Ration. Mech. Anal. 196 (2010) 227–280. [CrossRef] [MathSciNet] [Google Scholar]
  31. R.H. Nochetto and J.-H. Pyo, The Gauge-Uzawa finite element method. Part I: the Navier-Stokes equations. SIAM J. Numer. Anal. 43 (2005) 1043–1068. [CrossRef] [MathSciNet] [Google Scholar]
  32. M. Paicu and A. Zarnescu, Global existence and regularity for the full coupled Navier-Stokes and Q-tensor system. SIAM J. Math. Anal. 43 (2011) 2009–2049. [CrossRef] [MathSciNet] [Google Scholar]
  33. M. Paicu and A. Zarnescu, Energy dissipation and regularity for a coupled Navier-Stokes and Q-tensor system. Arch. Rat. Mech. Anal. 203 (2012) 45–67. [CrossRef] [Google Scholar]
  34. J. Shen, On error estimates of projection methods for Navier-Stokes equations: first-order schemes. SIAM J. Numer. Anal. 29 (1992) 57–77. [Google Scholar]
  35. J. Simon, Compact sets in the space Lp(0, T; B). Ann. Mat. App. 146 (1986) 65–96. [CrossRef] [Google Scholar]
  36. A.M. Sonnet and E. Virga, Dissipative Ordered Fluids, Theories for Liquid Crystals. Springer US (2012). [CrossRef] [Google Scholar]
  37. M.J. Stephen and J.P. Straley, Physics of liquid crystals. Rev. Mod. Phys. 46 (1974) 617–704. [CrossRef] [Google Scholar]
  38. R. Temam and A. Chorin, Navier–Stokes Equations: Theory and Numerical Analysis. Vol. 45. (1978). [Google Scholar]
  39. X. Yang and L. Ju, Efficient linear schemes with unconditional energy stability for the phase field elastic bending energy model. Comput. Methods Appl. Mech. Eng. 315 (2017) 691–712. [CrossRef] [Google Scholar]
  40. X. Yang and J. Zhao, On linear and unconditionally energy stable algorithms for variable mobility Cahn-Hilliard type equation with logarithmic Flory-Huggins potential. Commun. Comput. Phys. 25 (2018) 703–728. [Google Scholar]
  41. X. Yang, J. Zhao and Q. Wang, Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333 (2017) 104–127. [Google Scholar]
  42. X. Yang, J. Zhao and X. He, Linear, second order and unconditionally energy stable schemes for the viscous Cahn-Hilliard equation with hyperbolic relaxation using the invariant energy quadratization method. J. Comput. Appl. Math. 343 (2018) 80–97. [CrossRef] [MathSciNet] [Google Scholar]
  43. J. Zhao and Q. Wang, Semi-discrete energy-stable schemes for a tensor-based hydrodynamic model of nematic liquid crystal flows. J. Sci. Comput. 68 (2016) 1241–1266. [CrossRef] [MathSciNet] [Google Scholar]
  44. J. Zhao, X. Yang, Y. Gong and Q. Wang, A novel linear second order unconditionally energy stable scheme for a hydrodynamic Q-tensor model of liquid crystals. Comput. Methods Appl. Mech. Eng. 318 (2017) 803–825. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you