Open Access
Issue
ESAIM: M2AN
Volume 57, Number 6, November-December 2023
Page(s) 3499 - 3536
DOI https://doi.org/10.1051/m2an/2023081
Published online 20 December 2023
  1. B. Adcock and D. Huybrechs, Frames and numerical approximation. SIAM Rev. 61 (2019) 443–473. [CrossRef] [MathSciNet] [Google Scholar]
  2. B. Adcock and D. Huybrechs, Frames and numerical approximation II: Generalized sampling. J. Fourier Anal. Appl. 26 (2020) 34. [CrossRef] [Google Scholar]
  3. P.R.S. Antunes, A numerical algorithm to reduce ill-conditioning in meshless methods for the helmholtz equation. Numer. Algorithms 79 (2018) 879–897. [CrossRef] [MathSciNet] [Google Scholar]
  4. A.H. Barnett, Dissipation in deforming chaotic billiards, Ph.D. thesis, Harvard University (2000). [Google Scholar]
  5. A.H. Barnett and T. Betcke, Stability and convergence of the method of fundamental solutions for Helmholtz problems on analytic domains. J. Comput. Phys. 227 (2008) 7003–7026. [CrossRef] [MathSciNet] [Google Scholar]
  6. H. Barucq, A. Bendali, J. Diaz and S. Tordeux, Local strategies for improving the conditioning of the plane-wave ultra-weak variational formulation. J. Comput. Phys. 441 (2021) 18. [Google Scholar]
  7. P. Bratley and B.L. Fox, Algorithm 659: Implementing sobol’s quasirandom sequence generator. ACM Trans. Math. Software 14 (1988) 88–100. [CrossRef] [Google Scholar]
  8. P.D. Brubeck, Y. Nakatsukasa and L.N. Trefethen, Vandermonde with Arnoldi. SIAM Rev. 63 (2021) 405–415. [CrossRef] [MathSciNet] [Google Scholar]
  9. O. Cessenat and B. Despres, Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem. SIAM J. Numer. Anal. 35 (1998) 255–299. [CrossRef] [MathSciNet] [Google Scholar]
  10. S. Chaillat and F. Collino, A wideband fast multipole method for the Helmholtz kernel: theoretical developments. Comput. Math. Appl. 70 (2015) 660–678. [CrossRef] [MathSciNet] [Google Scholar]
  11. G. Chardon, A. Cohen and L. Daudet, Sampling and reconstruction of solutions to the Helmholtz equation. Sampl. Theory Signal Image Process. 13 (2014) 67–89. [CrossRef] [MathSciNet] [Google Scholar]
  12. O. Christensen, An introduction to frames and Riesz bases, 2nd edition. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, Cham (2016). [CrossRef] [Google Scholar]
  13. A. Cohen and G. Migliorati, Optimal weighted least-squares methods. SMAI J. Comput. Math. 3 (2017) 181–203. [CrossRef] [MathSciNet] [Google Scholar]
  14. D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, 3rd edition. Vol. 93. New York, Springer (2013). [CrossRef] [Google Scholar]
  15. D. Colton and P. Monk, A novel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region. SIAM J. Appl. Math. 45 (1985) 1039–1053. [CrossRef] [MathSciNet] [Google Scholar]
  16. S. Congreve, J. Gedicke and I. Perugia, Numerical investigation of the conditioning for plane wave discontinuous galerkin methods. In European Conference on Numerical Mathematics and Advanced Applications . Springer (2017) 493–500. [Google Scholar]
  17. E. Deckers, O. Atak, L. Coox, R. D’Amico, H. Devriendt, S. Jonckheere, K. Koo, B. Pluymers, D. Vandepitte and W. Desmet, The wave based method: an overview of 15 years of research. Wave Motion 51 (2014) 550–565. [CrossRef] [MathSciNet] [Google Scholar]
  18. D. Freeman and D. Speegle, The discretization problem for continuous frames. Adv. Math. 345 (2019) 784–813. [CrossRef] [MathSciNet] [Google Scholar]
  19. N. Galante, Evanescent plane wave approximation of helmholtz solutions in spherical domains, Master thesis, Università di Pavia (2023). [Google Scholar]
  20. M. Hahmann, S.A. Verburg and E. Fernandez-Grande, Spatial reconstruction of sound fields using local and data-driven functions. J. Acoust. Soc. Am. 150 (2021) 4417–4428. [CrossRef] [PubMed] [Google Scholar]
  21. J. Hampton and A. Doostan, Coherence motivated sampling and convergence analysis of least squares polynomial Chaos regression. Comput. Methods Appl. Mech. Eng. 290 (2015) 73–97. [CrossRef] [Google Scholar]
  22. R. Hiptmair, A. Moiola and I. Perugia, A survey of Trefftz methods for the Helmholtz equation. In Building bridges: connections and challenges in modern approaches to numerical partial differential equations, Vol. 114 Springer, Cham (2016) 237–278. [CrossRef] [Google Scholar]
  23. T. Huttunen, P. Gamallo and R.J. Astley, Comparison of two wave element methods for the Helmholtz problem. Commun. Numer. Methods Eng. 25 (2009) 35–52. [CrossRef] [Google Scholar]
  24. D. Huybrechs and A.-E. Olteanu, An oversampled collocation approach of the wave based method for Helmholtz problems. Wave Motion 87 (2019) 92–105. [CrossRef] [MathSciNet] [Google Scholar]
  25. W. Jin and W.B. Kleijn, Theory and design of multizone soundfield reproduction using sparse methods. IEEE Trans. Audio Speech Lang. Process. 23 (2015) 2343–2355. [CrossRef] [Google Scholar]
  26. S. Joe and F.Y. Kuo, Remark on Algorithm 659: implementing Sobol’s quasirandom sequence generator. ACM Trans. Math. Software 29 (2003) 49–57. [CrossRef] [MathSciNet] [Google Scholar]
  27. T. Luostari, T. Huttunen and P. Monk, Improvements for the ultra weak variational formulation. Int. J. Numer. Methods Eng. 94 (2013) 598–624. [CrossRef] [Google Scholar]
  28. J.M. Melenk, On generalized finite element methods, Ph.D. thesis, University of Maryland (1995). [Google Scholar]
  29. G. Migliorati and F. Nobile, Stable high-order randomized cubature formulae in arbitrary dimension. J. Approx. Theory 275 (2022) 30. [Google Scholar]
  30. A. Moiola, R. Hiptmair and I. Perugia, Plane wave approximation of homogeneous Helmholtz solutions. Z. Angew. Math. Phys. 62 (2011) 809–837. [CrossRef] [MathSciNet] [Google Scholar]
  31. F.W.J. Olver, A.B. Olde Daalhuis, D.W. Lozier, B.I. Schneider, R.F. Boisvert, C.W. Clark, B.R. Miller, B.V. Saunders, H.S. Cohl and M.A. McClain, NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.1 of 2021-03-15. [Google Scholar]
  32. V.I. Paulsen and M. Raghupathi, An introduction to the theory of reproducing kernel Hilbert spaces. In Vol. 152 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2016). [Google Scholar]
  33. E. Perrey-Debain, Plane wave decomposition in the unit disc: convergence estimates and computational aspects. J. Comput. Appl. Math. 193 (2006) 140–156. [CrossRef] [MathSciNet] [Google Scholar]
  34. S.A. Verburg and E. Fernandez-Grande, Reconstruction of the sound field in a room using compressive sensing. J. Acoust. Soc. Am. 143 (2018) 3770–3779. [CrossRef] [PubMed] [Google Scholar]
  35. N. Weck, Approximation by Herglotz wave functions. Math. Methods Appl. Sci. 27 (2004) 155–162. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you