Open Access
Issue
ESAIM: M2AN
Volume 57, Number 6, November-December 2023
Page(s) 3537 - 3583
DOI https://doi.org/10.1051/m2an/2023090
Published online 20 December 2023
  1. G. Allaire, S. Clerc and S. Kokh, A five-equation model for the numerical simulation of interfaces in two-phase flows. C.R. Acad. Sci. Ser. I Math. 331 (2000) 1017–1022. [Google Scholar]
  2. A. Ambroso, C. Chalons and P.-A. Raviart, A Godunov-type method for the seven-equation model of compressible two-phase flow. Comput. Fluids 54 (2012) 67–91. [Google Scholar]
  3. M.R. Baer and J.W. Nunziato, A two phase mixture theory for the deflagration to detonation transition (DDT) in reactive granular materials. Int. J. Multiphase Flow 12 (1986) 861–889. [CrossRef] [Google Scholar]
  4. Z. Bilicki and J. Kestin, Physical aspects of the relaxation model in two-phase flow. Proc. R. Soc. London Math. Phys. Sci. 428 (1990) 379–397. [Google Scholar]
  5. H. Boukili and J.-M. Hérard, Relaxation and simulation of a barotropic three-phase flow model. ESAIM. Math. Model. Numer. Anal. 53 (2019) 1031–1059. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  6. H. Boukili and J.-M. Hérard, Simulation and preliminary validation of a three-phase flow model with energy. Comput. Fluids 221 (2021) 104868. [CrossRef] [Google Scholar]
  7. D. Bresch and M. Hillairet, Note on the derivation of multi-component flow systems. Proc. Am. Math. Soc. 143 (2015) 3429–3443. [CrossRef] [Google Scholar]
  8. D. Bresch and M. Hillairet, A compressible multifluid system with new physical relaxation terms. Annales scientifiques de l’ Ecole Normale Supérieure. Preprint arXiv:1601.08038 (2016). [Google Scholar]
  9. J. Bussac and K. Saleh, Numerical simulation of a barotropic two-phase flow model with miscible phases. Springer Proc. FVCA 10 Conf. 433 (2023) 63–71. [Google Scholar]
  10. A. Chauvin, Etude experimentale de l’attenuation d’une onde de choc par un nuage de gouttes et validation numerique. Ph.D. thesis, Université Aix-Marseille (2012). [Google Scholar]
  11. A. Chauvin, G. Jourdan, E. Daniel, L. Houas and R. Tosello, Experimental investigation of the propagation of a planar shock wave through a two-phase gas–liquid medium. Phys. Fluids 23 (2011) 113301. [CrossRef] [Google Scholar]
  12. A. Chauvin, E. Daniel, A. Chinnayya, J. Massoni and G. Jourdan, Shock waves in sprays: numerical study of secondary atomization and experimental comparison. Shock waves 26 (2016) 403–415. [CrossRef] [Google Scholar]
  13. F. Coquel, T. Gallouët, J.-M. Hérard and N. Seguin, Closure laws for a two fluid two-pressure model. C.R. Acad. Sci. Paris Ser. I 332 (2002) 927–932. [CrossRef] [Google Scholar]
  14. F. Coquel, J.-M. Hérard, K. Saleh and N. Seguin, A robust entropy-satisfying finite volume scheme for the isentropic Baer-Nunziato model. ESAIM: Math. Modell. Numer. Anal. 48 (2014) 165–206. [CrossRef] [EDP Sciences] [Google Scholar]
  15. F. Coquel, J.-M. Hérard, K. Saleh and N. Seguin, Two properties of two-velocity two-pressure models for two-phase flows. Commun. Math. Sci. 12 (2014) 593–600. [Google Scholar]
  16. F. Coquel, J.-M. Hérard and K. Saleh, A positive and entropy-satisfying finite volume scheme for the Baer-Nunziato model. J. Comput. Phys. 330 (2017) 401–435. [Google Scholar]
  17. F. Coquel, C. Marmignon, P. Rai and F. Renac, An entropy stable high-order discontinuous galerkin spectral element method for the Baer-Nunziato two-phase flow model. J. Comput. Phys. 431 (2021) 110135. [CrossRef] [Google Scholar]
  18. F. Crouzet, F. Daude, P. Galon, J.-M. Hérard, O. Hurisse and Y. Liu, Validation of a two-fluid model on unsteady liquid-vapor water flows. Comput. Fluids 119 (2015) 131–142. [Google Scholar]
  19. P. Downar-Zapolski, Z. Bilicki, L. Bolle and J. Franco, The non-equilibrium relaxation model for one-dimensional flashing liquid flow. Int. J. Multiphase Flow 22 (1996) 473–483. [CrossRef] [Google Scholar]
  20. P. Embid and M.R. Baer, Mathematical analysis of a two-phase continuum mixture theory. Continuum Mech. Thermodyn. 4 (1992) 279–312. [CrossRef] [MathSciNet] [Google Scholar]
  21. R. Eymard, T. Gallouët and R. Herbin, Finite volume methods. Handb. Numer. Anal. 7 (2000) 713–1018. [Google Scholar]
  22. G. Faccanoni, S. Kokh and G. Allaire, Approximation of liquid–vapor phase transition for compressible fluids with tabulated EoS. C.R. Math. 348 (2010) 473–478. [CrossRef] [Google Scholar]
  23. T. Flåtten and G. Linga, A hierarchy of non-equilibrium two-phase flow models. ESAIM: Proc. Surv. 66 (2019) 109–143. [CrossRef] [EDP Sciences] [Google Scholar]
  24. T. Flåtten and H. Lund, Relaxation two-phase flow models and the sub-characteristic condition. Math. Models Methods Appl. Sci. 21 (2011) 2379–2407. [CrossRef] [MathSciNet] [Google Scholar]
  25. T. Gallouët, J.-M. Hérard and N. Seguin, Numerical modeling of two-phase flows using the two fluid two-pressure approach. Math. Models Methods Appl. Sci. 14 (2004) 663–700. [CrossRef] [MathSciNet] [Google Scholar]
  26. T. Gallouët, P. Helluy, J.-M. Hérard and J. Nussbaum, Hyperbolic relaxation models for granular flows. Math. Model. Numer. Anal. 44 (2010) 371–400. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  27. S. Gavrilyuk, Multiphase flow modeling via Hamilton’s principle, in Variational Models and Methods in Solid and Fluid Mechanics. Springer (2011) 163–210. [CrossRef] [Google Scholar]
  28. S. Gavrilyuk, The structure of pressure relaxation terms: the one-velocity case. EDF report H-I83-2014-0276-EN (2014). [Google Scholar]
  29. S. Gavrilyuk and R. Saurel, Mathematical and numerical modeling of two-phase compressible flows with micro-inertia. J. Comput. Phys. 175 (2002) 326–360. [Google Scholar]
  30. S. Gavrilyuk, H. Gouin and Y. Perepechko, A variational principle for two fluid models. C.R. Acad. Sci. Paris Ser. IIB 324 (1997) 483–490. [Google Scholar]
  31. B.E. Gelfand, Droplet breakup phenomena in flows with velocity lag. Prog. Energy Combust. Sci. 22 (1996) 201–265. [CrossRef] [Google Scholar]
  32. J. Glimm, D. Saltz and D.H. Sharp, Two phase flow modelling of a fluid mixing layer. J. Fluid Mech. 378 (1999) 39–47. [Google Scholar]
  33. E. Godlewski and P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws. Vol. 118, Springer Science & Business Media (2013). [Google Scholar]
  34. L. Grabowsky, M. Hantke and S. Müller, News on Baer-Nunziato type model at pressure equilibrium. Continuum Mech. Thermodyn. 33 (2021) 767–788. [CrossRef] [MathSciNet] [Google Scholar]
  35. V. Guillemaud, Modelisation et simulation numerique des ecoulements diphasiques par une approche bifluide a deux pressions. Ph.D. thesis, Université Aix-Marseille (2007). [Google Scholar]
  36. E. Han, M. Hantke and S. Müller, Efficient and robust relaxation procedures for multi-component mixtures including phase transition. J. Comput. Phys. 338 (2017) 217–239. [Google Scholar]
  37. M. Hantke and S. Müller, Analysis and simulation of a new multi-component two-phase flow model with phase transition and chemical reactions. Q. Appl. Math. 76 (2018). DOI: 10.14760/OWP-2017-08. [Google Scholar]
  38. M. Hantke, S. Müller and P. Richter, Closure conditions for non-equilibrium multi-component models. Continuum Mech. Thermodyn. 28 (2016) 1157–1189. [CrossRef] [MathSciNet] [Google Scholar]
  39. P. Helluy, Simulation numérique des écoulements multiphasiques: de la théorie aux applications. Habilitation à diriger des recherches, Université du Sud Toulon Var (2005). https://tel.archives-ouvertes.fr/tel-00657839/file/habilitation-helluy.pdf. [Google Scholar]
  40. J.-M. Hérard, A three-phase flow model. Math. Comput. Model. 45 (2007) 732–755. [Google Scholar]
  41. J.-M. Hérard, A class of compressible multiphase flow models. C.R. Math. 354 (2016) 954–959. [CrossRef] [MathSciNet] [Google Scholar]
  42. J.-M. Hérard, The relaxation process in a class of two-phase flow models. Internal EDF report 6125–3016-2022-00089-EN (2022). [Google Scholar]
  43. J.-M. Hérard and G. Jomée, Pressure relaxation in some multiphase flow models. ESAIM: Proc. Surv. 72 (2023) 19–40. [CrossRef] [EDP Sciences] [Google Scholar]
  44. M. Hillairet, On Baer-Nunziato multiphase flow models. ESAIM: Proc. Surv. 66 (2019) 61–83. [CrossRef] [EDP Sciences] [Google Scholar]
  45. O. Hurisse, Simulation des écoulements industriels diphasiques compressibles. Habilitation à diriger des recherches, Université de Strasbourg (2017). https://hal.archives-ouvertes.fr/tel-01570985/file/hdr-hurisse.pdf. [Google Scholar]
  46. M. Ishii, Thermo-fluid dynamic theory of two-phase flow. Eyrolles-Collection de la Direction des Etudes et Recherches EDF (1975). [Google Scholar]
  47. S. Jaouen, Etude mathématique et numérique de stabilité pour des modeles hydrodynamiques avec transition de phase. Ph.D. thesis, Paris 6 (2001). [Google Scholar]
  48. A. Kapila, S.F. Son, J.B. Bdzil, R. Menikoff and D.S. Stewart, Two phase modeling of a DDT: structure of the velocity relaxation zone. Phys. Fluids 9 (1997) 3885–3897. [CrossRef] [Google Scholar]
  49. M. Labois, Modélisation des déséquilibres mécaniques pour les écoulements diphasiques. Approche par relaxation et par modèle réduit. Ph.D. thesis, Université Aix-Marseille (2008). [Google Scholar]
  50. O. Le Métayer and R. Saurel, The Noble-Abel stiffened-gas equation of state. Phys. Fluids 28 (2016). DOI: 10.1063/1.4945981. [Google Scholar]
  51. H. Lund, A hierarchy of relaxation models for two-phase flow. SIAM J. Appl. Math. 72 (2012) 1713–1741. [CrossRef] [MathSciNet] [Google Scholar]
  52. M. Pelanti, Arbitrary-rate relaxation techniques for the numerical modeling of compressible two-phase flows with heat and mass transfer. Int. J. Multiphase Flow 153 (2022) 104097. [CrossRef] [Google Scholar]
  53. M. Pelanti and K.-M. Shyue, A numerical model for multiphase liquid–vapor–gas flows with interfaces and cavitation. Int. J. Multiphase Flow 113 (2019) 208–230. [CrossRef] [MathSciNet] [Google Scholar]
  54. S. Picchi, MC3D Version 3.9: description of the models of the premixing application. IRSN internal report, (2017). [Google Scholar]
  55. P. Rai, Modeling and numerical simulation of compressible multicomponent flows. Ph.D. thesis, Institut Polytechnique de Paris (2021). [Google Scholar]
  56. B. Re and R. Abgrall, A pressure-based method for weakly compressible two-phase flows under a Baer-Nunziato type model with generic equations of state and pressure and velocity disequilibrium. Int. J. Numer. Methods Fluids 94 (2022) 1183–1232. [CrossRef] [Google Scholar]
  57. V.V. Rusanov, Calculation of Interaction of Non-Steady Shock Waves with Obstacles. NRC, Division of Mechanical Engineering (1962). [Google Scholar]
  58. K. Saleh, Analyse et Simulation Numérique par Relaxation d’Ecoulements Diphasiques Compressibles. Contribution au Traitement des Phases Evanescentes, Theses, Université Pierre et Marie Curie – Paris VI (2012). [Google Scholar]
  59. K. Saleh, A relaxation scheme for a hyperbolic multiphase flow model-part I: barotropic EOS. ESAIM: Math. Modell. Numer. Anal. 53 (2019) 1763–1795. [CrossRef] [EDP Sciences] [Google Scholar]
  60. R. Saurel and R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150 (1999) 425–467. [CrossRef] [MathSciNet] [Google Scholar]
  61. D.W. Schwendeman, C.W. Wahle and A.K. Kapila, The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow. J. Comput. Phys. 212 (2006) 490–526. [Google Scholar]
  62. M.D. Thanh and D.X. Vinh, The Riemann problem for the nonisentropic Baer-Nunziato model of two-phase flows. Nonlinear Anal.: Real World App. 67 (2022) 103623. [CrossRef] [Google Scholar]
  63. M.D. Thanh, D. Kröner and N.T. Nam, Numerical approximation for a Baer-Nunziato model of two-phase flows. Appl. Numer. Math. 61 (2011) 702–721. [Google Scholar]
  64. S.A. Tokareva and E.F. Toro, HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow. J. Comput. Phys. 229 (2010) 3573–3604. [Google Scholar]
  65. G. Wanner and E. Hairer, Solving Ordinary Differential Equations II. Vol. 375. Springer Berlin Heidelberg (1996). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you