Open Access
Issue |
ESAIM: M2AN
Volume 57, Number 6, November-December 2023
|
|
---|---|---|
Page(s) | 3615 - 3636 | |
DOI | https://doi.org/10.1051/m2an/2023078 | |
Published online | 20 December 2023 |
- S. Adjerid, I. Babuška, R. Guo and T. Lin, An enriched immersed finite element method for interface problems with nonhomogeneous jump conditions. Comput. Methods Appl. Mech. Eng. 404 (2023) 115770. [CrossRef] [Google Scholar]
- B. Ahmad, A. Alsaedi, F. Brezzi, L.D. Marini and A. Russo, Equivalent projectors for virtual element methods. Comput. Math. Appl. 66 (2013) 376–391. [Google Scholar]
- T. Arbogast and Z. Chen, On the implementation of mixed methods as nonconforming methods for second-order elliptic problems. Math. Comput. 64 (1995) 943–972. [Google Scholar]
- D.N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér. 19 (1985) 7–32. [MathSciNet] [Google Scholar]
- B. Ayuso de Dios, K. Lipnikov and G. Manzini, The nonconforming virtual element method. ESAIM Math. Model. Numer. Anal. 50 (2016) 879–904. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- J. Bear, Dynamics of Fluids in Porous Media, Courier Corporation, 1988. [Google Scholar]
- L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini and A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. [Google Scholar]
- L. Beirão da Veiga, F. Brezzi and L.D. Marini, Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51 (2013) 794–812. [Google Scholar]
- L. Beirão da Veiga, F. Brezzi, L.D. Marini and A. Russo, The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24 (2014) 1541–1573. [Google Scholar]
- L. Beirão da Veiga, K. Lipnikov and G. Manzini, The mimetic finite difference method for elliptic problems. In Vol. 11 of MS&A Modelling Simulation and Applications. Springer, Cham (2000). [Google Scholar]
- L. Beirão da Veiga, C. Lovadina and G. Vacca, Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM Math. Model. Numer. Anal. 51 (2017) 509–535. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- L. Beirão da Veiga, F. Brezzi, F. Dassi, L.D. Marini and A. Russo, A family of three-dimensional virtual elements with applications to magnetostatics. SIAM J. Numer. Anal. 56 (2018) 2940–2962. [CrossRef] [MathSciNet] [Google Scholar]
- L. Beirão da Veiga, F. Dassi, G. Manzini and L. Mascotto, Virtual elements for Maxwell’s equations. Comput. Math. Appl. 116 (2022) 82–99. [CrossRef] [MathSciNet] [Google Scholar]
- T. Belytschko and T. Black, Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45 (1999) 601–620. [Google Scholar]
- T. Belytschko, C. Parimi, N. Moës, N. Sukumar and S. Usui, Structured extended finite element methods for solids defined by implicit surfaces. Int. J. Numer. Methods Eng. 56 (2003) 609–635. [CrossRef] [Google Scholar]
- J.H. Bramble and J.T. King, A finite element method for interface problems in domains with smooth boundaries and interfaces. Adv. Comput. Math. 6 (1996) 109–138. [Google Scholar]
- S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods, 3rd edition. In vol. 15 of Texts in Applied Mathematics. Springer, New York (2008). [Google Scholar]
- S.C. Brenner and L.-Y. Sung, Virtual element methods on meshes with small edges or faces. Math. Models Methods Appl. Sci. 28 (2018) 1291–1336. [Google Scholar]
- F. Brezzi, K. Lipnikov and V. Simoncini, A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 15 (2005) 1533–1551. [Google Scholar]
- F. Brezzi, A. Buffa and K. Lipnikov, Mimetic finite differences for elliptic problems. ESAIM:M2AN 43 (2009) 277–295. [CrossRef] [EDP Sciences] [Google Scholar]
- F. Brezzi, R.S. Falk and L.D. Marini, Basic principles of mixed virtual element methods. ESAIM:M2AN 48 (2014) 1227–1240. [CrossRef] [EDP Sciences] [Google Scholar]
- E. Burman and A. Ern, An unfitted hybrid high-order method for elliptic interface problems. SIAM J. Numer. Anal. 56 (2018) 1525–1546. [CrossRef] [MathSciNet] [Google Scholar]
- E. Burman, M. Cicuttin, G. Delay and A. Ern, An unfitted hybrid high-order method with cell agglomeration for elliptic interface problems. SIAM J. Sci. Comput. 43 (2021) A859–A882. [CrossRef] [Google Scholar]
- A. Cangiani, V. Gyrya and G. Manzini, The nonconforming virtual element method for the Stokes equations. SIAM J. Numer. Anal. 54 (2016) 3411–3435. [Google Scholar]
- S. Cao, L. Chen and R. Guo, A virtual finite element method for two-dimensional Maxwell interface problems with a background unfitted mesh. Math. Models Methods Appl. Sci. 31 (2021) 2907–2936. [CrossRef] [MathSciNet] [Google Scholar]
- S. Cao, L. Chen, R. Guo and F. Lin, Immersed virtual element methods for elliptic interface problems in two dimensions. J. Sci. Comput. 93 (2022) 41. [CrossRef] [Google Scholar]
- K.S. Chang and D.Y. Kwak, Discontinuous bubble scheme for elliptic problems with jumps in the solution. Comput. Methods Appl. Mech. Eng. 200 (2011) 494–508. [CrossRef] [Google Scholar]
- L. Chen, H. Wei and M. Wen, An interface-fitted mesh generator and virtual element methods for elliptic interface problems. J. Comput. Phys. 334 (2017) 327–348. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Chen and J. Zou, Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math. 79 (1998) 175–202. [Google Scholar]
- P.G. Ciarlet, The finite element method for elliptic problems. In vol. 40 of Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002). Reprint of the 1978 original [North-Holland, Amsterdam, MR0520174 (58 #25001)]. [Google Scholar]
- M. Cicuttin, A. Ern and N. Pignet, Hybrid high-order methods–a primer with applications to solid mechanics. SpringerBriefs in Mathematics, Springer, Cham (2021). [CrossRef] [Google Scholar]
- B. Cockburn, J. Gopalakrishnan and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47 (2009) 1319–1365. [Google Scholar]
- B. Cockburn, J. Guzmán, S.-C. Soon and H.K. Stolarski, An analysis of the embedded discontinuous Galerkin method for second-order elliptic problems. SIAM J. Numer. Anal. 47 (2009) 2686–2707. [CrossRef] [MathSciNet] [Google Scholar]
- B. Cockburn, D.A. Di Pietro and A. Ern, Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM Math. Model. Numer. Anal. 50 (2016) 635–650. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- F. de Prenter, C. Lehrenfeld and A. Massing, A note on the stability parameter in Nitsche’s method for unfitted boundary value problems. Comput. Math. Appl. 75 (2018) 4322–4336. [CrossRef] [MathSciNet] [Google Scholar]
- D.A. Di Pietro and A. Ern, Hybrid high-order methods for variable-diffusion problems on general meshes. C. R. Math. Acad. Sci. Paris 353 (2015) 31–34. [Google Scholar]
- R.L. Foote, Regularity of the distance function. Proc. Amer. Math. Soc. 92 (1984) 153–155. [MathSciNet] [Google Scholar]
- R. Guo and T. Lin, A higher degree immersed finite element method based on a Cauchy extension for elliptic interface problems. SIAM J. Numer. Anal. 57 (2019) 1545–1573. [CrossRef] [MathSciNet] [Google Scholar]
- A. Hansbo and P. Hansbo, An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 191 (2002) 5537–5552. [Google Scholar]
- A. Hansbo and P. Hansbo, A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput. Methods Appl. Mech. Eng. 193 (2004) 3523–3540. [Google Scholar]
- X. He, T. Lin and Y. Lin, Approximation capability of a bilinear immersed finite element space. Numer. Methods Partial Differ. Equ. 24 (2008) 1265–1300. [CrossRef] [Google Scholar]
- T.Y. Hou, Z. Li, S. Osher and H. Zhao, A hybrid method for moving interface problems with application to the Hele-Shaw flow. J. Comput. Phys. 134 (1997) 236–252. [CrossRef] [MathSciNet] [Google Scholar]
- H. Ji, An immersed Raviart-Thomas mixed finite element method for elliptic interface problems on unfitted meshes. J. Sci. Comput. 91 (2022) 66. [CrossRef] [Google Scholar]
- H. Ji, An immersed Crouzeix-Raviart finite element method in 2D and 3D based on discrete level set functions. Numer. Math. 153 (2023) 279–325. [CrossRef] [MathSciNet] [Google Scholar]
- H. Ji, F. Wang, J. Chen and Z. Li, A new parameter free partially penalized immersed finite element and the optimal convergence analysis. Numer. Math. 150 (2022) 1035–1086. [CrossRef] [MathSciNet] [Google Scholar]
- H. Ji, F. Wang, J. Chen and Z. Li, Analysis of nonconforming IFE methods and a new scheme for elliptic interface problems. ESAIM Math. Model. Numer. Anal. 57 (2023) 2041–2076. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- G. Jo and D.Y. Kwak, An IMPES scheme for a two-phase flow in heterogeneous porous media using a structured grid. Comput. Methods Appl. Mech. Eng. 317 (2017) 684–701. [CrossRef] [Google Scholar]
- G. Jo and D.Y. Kwak, Geometric multigrid algorithms for elliptic interface problems using structured grids. Numer. Algorithms 81 (2019) 211–235. [CrossRef] [MathSciNet] [Google Scholar]
- G. Jo and D.Y. Kwak, Mixed virtual volume methods for elliptic problems. Comput. Math. Appl. 113 (2022) 345–352. [CrossRef] [MathSciNet] [Google Scholar]
- D. Kwak and J. Lee, A modified P1-immersed finite element method. Int. J. Pure Appl. Math. 104 (2015) 471–494. [CrossRef] [Google Scholar]
- D.Y. Kwak and H. Park, Lowest-order virtual element methods for linear elasticity problems. Comput. Methods Appl. Mech. Eng. 390 (2022) 20. [Google Scholar]
- D.Y. Kwak, K.T. Wee and K.S. Chang, An analysis of a broken P1-nonconforming finite element method for interface problems. SIAM J. Numer. Anal. 48 (2010) 2117–2134. [CrossRef] [MathSciNet] [Google Scholar]
- S. Lee, D.Y. Kwak and I. Sim, Immersed finite element method for eigenvalue problem. J. Comput. Appl. Math. 313 (2017) 410–426. [CrossRef] [MathSciNet] [Google Scholar]
- S. Lemaire, Bridging the hybrid high-order and virtual element methods. IMA J. Numer. Anal. 41 (2021) 549–593. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Li, T. Lin, Y. Lin and R.C. Rogers, An immersed finite element space and its approximation capability. Numer. Methods Partial Differ. Equ. 20 (2004) 338–367. [Google Scholar]
- J. Li, J.M. Melenk, B. Wohlmuth and J. Zou, Optimal a priori estimates for higher order finite elements for elliptic interface problems. Appl. Numer. Math. 60 (2010) 19–37. [Google Scholar]
- T. Lin, Y. Lin, R. Rogers and M.L. Ryan, A rectangular immersed finite element space for interface problems, in Scientific computing and applications (Kananaskis, AB, 2000). In Vol. 7 of Adv. Comput. Theory Pract., Nova Sci. Publ., Huntington, NY (2000) 107–114. [Google Scholar]
- T. Lin, D. Sheen and X. Zhang, A nonconforming immersed finite element method for elliptic interface problems. J. Sci. Comput. 79 (2019) 442–463. [CrossRef] [MathSciNet] [Google Scholar]
- L. Mu and X. Zhang, An immersed weak Galerkin method for elliptic interface problems. J. Comput. Appl. Math. 362 (2019) 471–483. [CrossRef] [MathSciNet] [Google Scholar]
- L. Mu, J. Wang and X. Ye, A weak Galerkin finite element method with polynomial reduction. J. Comput. Appl. Math. 285 (2015) 45–58. [CrossRef] [MathSciNet] [Google Scholar]
- L. Mu, J. Wang, X. Ye and S. Zhao, A new weak Galerkin finite element method for elliptic interface problems. J. Comput. Phys. 325 (2016) 157–173. [CrossRef] [MathSciNet] [Google Scholar]
- H. Park and D.Y. Kwak, An immersed weak Galerkin method for elliptic interface problems on polygonal meshes. Comput. Math. Appl. 147 (2023) 185–201. [CrossRef] [MathSciNet] [Google Scholar]
- C. Talischi, G.H. Paulino, A. Pereira and I.F.M. Menezes, PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidiscip. Optim. 45 (2012) 309–328. [CrossRef] [MathSciNet] [Google Scholar]
- J. Tushar, A. Kumar and S. Kumar, Virtual element methods for general linear elliptic interface problems on polygonal meshes with small edges. Comput. Math. Appl. 122 (2022) 61–75. [CrossRef] [MathSciNet] [Google Scholar]
- J. Wang and X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems. Math. Comput. 83 (2014) 2101–2126. [CrossRef] [Google Scholar]
- B. Zhang, J. Zhao, Y. Yang and S. Chen, The nonconforming virtual element method for elasticity problems. J. Comput. Phys. 378 (2019) 394–410. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.