Open Access
Volume 57, Number 6, November-December 2023
Page(s) 3585 - 3613
Published online 20 December 2023
  1. M.S. Agranovich and M.I. Vishik, Elliptic problems with a parameter and parabolic problems of general type. Uspekhi Mat. Nauk. 19 (1963) 53–161 (English translation: Russ. Math. Surv. 19 (1964) 53–157). [Google Scholar]
  2. G. Alessandrini, L. Rondi, E. Rosset and S. Vessella, The stability for the Cauchy problem for elliptic equations. Inverse Prob. 25 (2009) 123004. [Google Scholar]
  3. N.K. Arutyunyan and S.A. Nazarov, On singularities of the stress function at the corner points of the transverse cross-section of a twisted bar with a thin reinforcing layer. Prikl. Mat. Mekh. 47 (1983) 122–132 (English translation: J. Appl. Math. Mech. 47 (1984) 94–103). [Google Scholar]
  4. G. Beck, S. Imperiale and P. Joly, Asymptotic modelling of skin-effects in coaxial cables. SN Part. Diff. Equ. App. 1 (2020) 1–34. [CrossRef] [Google Scholar]
  5. L. Bers, F. John and M. Schechter, Partial Differential Equations, John Wiley, New York (1964). [Google Scholar]
  6. F. Blanc and S.A. Nazarov, Asymptotics of solutions to the Poisson problem in a perforated domain with corners. J. Math. Pures Appl. 76 (1997) 893–911. [CrossRef] [MathSciNet] [Google Scholar]
  7. A.-S. Bonnet-Ben Dhia and G. Legendre, An alternative to Dirichlet-to-Neumann maps for waveguides. C. R. Acad. Sci. Ser. I 349 (2011) 1005–1009. [Google Scholar]
  8. V.F. Butuzov, Asymptotic behavior of the solution of the equation μ2Δuk2(x, y)u = f(x, y) in a rectangular domain. Dirrerentsial’nye Uravneniya 9 (1973) 1654–1660 (English translation: Differ. Equ. 9 (1973) 1275–1279). [Google Scholar]
  9. L. Chesnel and V. Pagneux, Simple examples of perfectly invisible and trapped modes in waveguides. Quart. J. Mech. Appl. Math. 71 (2018) 297–315. [CrossRef] [MathSciNet] [Google Scholar]
  10. L. Chesnel, X. Claeys and S.A. Nazarov, A curious instability phenomenon for a rounded corner in presence of a negative material. Asymptotic Anal. 88 (2014) 43–74. [CrossRef] [MathSciNet] [Google Scholar]
  11. L. Chesnel, S.A. Nazarov and V. Pagneux, Invisibility and perfect reflectivity in waveguides with finite length branches. SIAM J. Appl. Math. 78 (2018) 2176–2199. [CrossRef] [MathSciNet] [Google Scholar]
  12. L. Chesnel, J. Heleine and S.A. Nazarov, Acoustic passive cloaking using thin outer resonators. ZAMP 73 (2022) 98. [Google Scholar]
  13. Y.D. Chong, L. Ge, H. Cao and A.D. Stone, Coherent perfect absorbers: time-reversed lasers. Phys. Rev. Lett. 105 (2010) 053901. [CrossRef] [PubMed] [Google Scholar]
  14. D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory. 3rd edition. Vol. 93. Springer-Verlag, Berlin (2013) xiv + 405.. [Google Scholar]
  15. M. Costabel and M. Dauge, A singularly perturbed mixed boundary value problem. Comm. Part. Differ. Equ. 21 (1996) 1919–1949. [CrossRef] [Google Scholar]
  16. M. Duruflé, H. Haddar and P. Joly, Higher order generalized impedance boundary conditions in electromagnetic scattering problems. C. R. Phys. 7 (2006) 533–542. [CrossRef] [Google Scholar]
  17. C. Goldstein, A finite element method for solving Helmholtz type equations in waveguides and other unbounded domains. Math. Comput. 39 (1982) 309–324. [CrossRef] [Google Scholar]
  18. P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985). [Google Scholar]
  19. H. Haddar and A. Lechleiter, Asymptotic models for scattering from unbounded media with high conductivity. Math. Model. Numer. Anal. 44 (2010) 1295–1317. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  20. H. Haddar, P. Joly and H.-M. Nguyen, Generalized impedance boundary conditions for scattering by strongly absorbing obstacles: the scalar case. Math. Mod. Meth. Appl. Sci. 15 (2005) 1273–1300. [CrossRef] [Google Scholar]
  21. H. Haddar, P. Joly and H.-M. Nguyen, Generalized impedance boundary conditions for scattering problems from strongly absorbing obstacles: the case of Maxwell’s equations. Math. Mod. Meth. Appl. Sci. 10 (2008) 1787–1827. [CrossRef] [Google Scholar]
  22. I. Harari, I. Patlashenko and D. Givoli, Dirichlet-to-Neumann maps for unbounded wave guides. J. Comput. Phys. 143 (1998) 200–223. [Google Scholar]
  23. F. Hecht, New development in FreeFem++. J. Numer. Math. 20 (2012) 251–265. [CrossRef] [MathSciNet] [Google Scholar]
  24. N. Jiménez, V. Romero-García, V. Pagneux and J.-P. Groby, Rainbow-trapping absorbers: broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems. Sci. Rep. 7 (2017) 1–12. [CrossRef] [Google Scholar]
  25. V.A. Kondratiev, Boundary problems for elliptic equations in domains with conical or angular points. Trudy Moskov. Mat. Obshch. 16 (1967) 209–292 (English translation: Trans. Moscow Math. Soc. 16 (1967) 227–313). [Google Scholar]
  26. V.A. Kondratiev, The smoothness of solution of Dirichlet’s problem for second-order elliptic equations in a region with a piecewise-smooth boundary. Differentsial’nye Uravneniya 6 (1970) 1831–1843 (English translation: Differ. Equ. 6 (1970) 1392–1401). [Google Scholar]
  27. S. Longhi, Formula -symmetric laser absorber. Phys. Rev. A 82 (2010) 031801. [CrossRef] [Google Scholar]
  28. V.G. Maz’ya and B.A. Plamenevsky, Elliptic boundary value problems on manifolds with singularities. Prob. Mat. Anal. 6 (1977) 85–142. [Google Scholar]
  29. V.G. Maz’ya and B.A. Plamenevsky, On boundary value problems for a second order elliptic equation in a domain with edges. Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 1 (1975) 102–108 (English translation: Vestnik Leningrad Univ. Math. 8 (1980) 99–106). [Google Scholar]
  30. V.G. Maz’ya, S.A. Nazarov and B.A. Plamenevskii, On the asymptotic behavior of solutions of elliptic boundary value problems with irregular perturbations of the domain. Probl. Mat. Anal. 8 (1981) 72–153, 1981. (Russian) [Google Scholar]
  31. V.G. Maz’ya, S.A. Nazarov and B.A. Plamenevsky, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains. Vol. 1, 2. Birkhäuser Verlag, Basel (2000) 435. [Google Scholar]
  32. A. Merkel, G. Theocharis, O. Richoux, V. Romero-García and V. Pagneux, Control of acoustic absorption in one-dimensional scattering by resonant scatterers. Appl. Phys. Lett. 107 (2015) 244102. [CrossRef] [Google Scholar]
  33. S.A. Nazarov, Vishik–Lyusternik method for elliptic boundary-value problems in regions with conical points. 1. The problem in a cone. Sibirsk. Mat. Zh. 22 (1981) 142–163 (English translation: Siberian Math. J. 22 (1982) 594–611). [CrossRef] [MathSciNet] [Google Scholar]
  34. S.A. Nazarov, Vishik–Lyusternik method for elliptic boundary-value problems in regions with conical points. 2. The problem in a bounded region. Sibirsk. Mat. Zh. 22 (1981) 132–152 (English translation: Siberian Math. J. 22 (1982) 753–769). [MathSciNet] [Google Scholar]
  35. S.A. Nazarov, Asymptotics of the solution of the Dirichlet problem for an equation with rapidly oscillating coefficients in a rectangle. Mat. sbornik. 182 (1991) 692–722 (English translation: Math. USSR Sbornik. 73 (1992) 79–110). [Google Scholar]
  36. S.A. Nazarov, Asymptotic conditions at a point, self-adjoint extensions of operators and the method of matched asymptotic expansions. Trudy St.-Petersburg Mat. Obshch. 5 (1996) 112–183 (English transl.: Trans. Am. Math. Soc. Ser. 2 (1999) 77–126). [Google Scholar]
  37. S.A. Nazarov, Asymptotic expansions of eigenvalues in the continuous spectrum of a regularly perturbed quantum waveguide. Theor. Math. Phys. 167 (2011) 239–262 (English translation: Theor. Math. Phys. 167 (2011) 606–627). [CrossRef] [Google Scholar]
  38. S.A. Nazarov, Enforced stability of a simple eigenvalue in the continuous spectrum. Funkt. Anal. i Prilozhen 47 (2013) 37–53 (English translation: Funct. Anal. Appl. 47 (2013) 195–209). [CrossRef] [Google Scholar]
  39. S.A. Nazarov and B.A. Plamenevsky, Elliptic Problems in Domains With Piecewise Smooth Boundaries. Walter de Gruyter, Berlin, New York (1994). [CrossRef] [Google Scholar]
  40. V. Romero-García, G. Theocharis, O. Richoux, A. Merkel, V. Tournat and V. Pagneux, Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators. Sci. Rep. 6 (2016) 1–8. [CrossRef] [Google Scholar]
  41. M.I. Vishik and L.A. Lyusternik, Regular degeneration and boundary layer for linear differential equations with small parameter. Uspekhi Mat. Nauk 12 (1957) 3–122. (English translation: Russ. Math. Surv. 2 (1962) 239–269). [Google Scholar]
  42. W. Wan, Y. Chong, L. Ge, H. Noh, A.S. Stone and H. Cao, Time-reversed lasing and interferometric control of absorption. Science 331 (2011) 889–892. [CrossRef] [PubMed] [Google Scholar]
  43. M. Yang, S. Chen, C. Fu and P. Sheng, Optimal sound-absorbing structures. Mater. Horiz. 4 (2017) 673–680. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you