Open Access
Volume 58, Number 1, January-February 2024
Page(s) 223 - 245
Published online 16 February 2024
  1. G. Alessandrini, L. Rondi, E. Rosset and S. Vessella, The stability for the Cauchy problem for elliptic equations. Inverse Probl. 25 (2009) 123004. [CrossRef] [Google Scholar]
  2. M.S. Alnæes, A. Logg, K.B. Ølgaard, M.E. Rognes and G.N. Wells, Unified form language: A domain-secific language for weak formulations of partial differential equations. ACM Trans. Math. Softw. 40 (2014). [Google Scholar]
  3. S. Averweg, A. Schwarz, C. Schwarz and J. Schröder, 3D modeling of generalized Newtonian fluid flow with data assimilation using the least-squares finite element method. Comput. Methods Appl. Mech. Eng. 392 (2022) 114668. [CrossRef] [Google Scholar]
  4. M. Badra, F. Caubet and J. Dardé, Stability estimates for Navier-Stokes equations and application to inverse problems. Discrete Contin. Dyn. Syst. Ser. B 21 (2016) 2379–2407. [CrossRef] [MathSciNet] [Google Scholar]
  5. A. Ballerini, Stable determination of an immersed body in a stationary Stokes fluid. Inverse Probl. 26 (2010) 125015. [CrossRef] [Google Scholar]
  6. M. Bellassoued, O. Imanuvilov and M. Yamamoto, Carleman estimate for the Navier-Stokes equations and an application to a lateral Cauchy problem. Inverse Probl. 32 (2016) 025001. [CrossRef] [Google Scholar]
  7. C. Bertoglio, D. Chapelle, M.A. Fernández, J.-F. Gerbeau and P. Moireau, State observers of a vascular fluid-structure interaction model through measurements in the solid. Comput. Methods Appl. Mech. Eng. 256 (2013) 149–168. [CrossRef] [Google Scholar]
  8. M. Boulakia, A.-C. Egloffe and C. Grandmont, Stability estimates for the unique continuation property of the Stokes system and for an inverse boundary coefficient problem. Inverse Probl. 29 (2013) 115001. [CrossRef] [Google Scholar]
  9. M. Boulakia, E. Burman, M.A. Fernández and C. Voisembert, Data assimilation finite element method for the linearized Navier-Stokes equations in the low Reynolds regime. Inverse Probl. 36 (2020) 085003. [CrossRef] [Google Scholar]
  10. L. Bourgeois, A mixed formulation of quasi-reversibility to solve the Cauchy problem for Laplace’s equation. Inverse Probl. 21 (2005) 1087–1104. [Google Scholar]
  11. L. Bourgeois, Convergence rates for the quasi-reversibility method to solve the Cauchy problem for Laplace’s equation. Inverse Probl. 22 (2006) 413–430. [CrossRef] [Google Scholar]
  12. L. Bourgeois and J. Dardé, The “exterior approach” to solve the inverse obstacle problem for the Stokes system. Inverse Probl. Imaging 8 (2014) 23–51. [CrossRef] [MathSciNet] [Google Scholar]
  13. E. Burman, Stabilized finite element methods for nonsymmetric, noncoercive, and ill-posed problems. Part I: Elliptic equations. SIAM J. Sci. Comput. 35 (2013) A2752–A2780. [Google Scholar]
  14. E. Burman, Error estimates for stabilized finite element methods applied to ill-posed problems. C. R. Math. Acad. Sci. Paris 352 (2014) 655–659. [Google Scholar]
  15. E. Burman, Stabilised finite element methods for ill-posed problems with conditional stability. In Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, Vol. 114 of Lect. Notes Comput. Sci. Eng. Springer, Cham (2016) 93–127. [CrossRef] [Google Scholar]
  16. E. Burman, A stabilized nonconforming finite element method for the elliptic Cauchy problem. Math. Comput. 86 (2017) 75–96. [Google Scholar]
  17. E. Burman and P. Hansbo, Stabilized nonconforming finite element methods for data assimilation in incompressible flows. Math. Comput. 87 (2018) 1029–1050. [Google Scholar]
  18. E. Burman, J.J.J. Gillissen and L. Oksanen, Stability Estimate for Scalar Image Velocimetry (2020). [Google Scholar]
  19. E. Burman, M. Nechita and L. Oksanen, A stabilized finite element method for inverse problems subject to the convection-diffusion equation. I: diffusion-dominated regime. Numer. Math. 144 (2020) 451–477. [CrossRef] [MathSciNet] [Google Scholar]
  20. E. Burman, M. Nechita and L. Oksanen, A stabilized finite element method for inverse problems subject to the convection-diffusion equation. II: convection-dominated regime. Numer. Math. 150 (2022) 769–801. [CrossRef] [MathSciNet] [Google Scholar]
  21. J. Dardé, A. Hannukainen and N. Hyvönen, An Hdiv-based mixed quasi-reversibility method for solving elliptic Cauchy problems. SIAM J. Numer. Anal. 51 (2013) 2123–2148. [Google Scholar]
  22. M. D’Elia, M. Perego and A. Veneziani, A variational data assimilation procedure for the incompressible Navier-Stokes equations in hemodynamics. J. Sci. Comput. 52 (2012) 340–359. [CrossRef] [MathSciNet] [Google Scholar]
  23. D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, Vol. 69. Springer Science & Business Media (2011). [Google Scholar]
  24. A. Ern and J.L. Guermond, Theory and practice of finite elements springer-verlag. New York (2004). [CrossRef] [Google Scholar]
  25. C. Fabre and G. Lebeau, Prolongement unique des solutions de l’equation de Stokes. Comm. Partial Differ. Equ. 21 (1996) 573–596. [CrossRef] [Google Scholar]
  26. B. García-Archilla and J. Novo, Error analysis of fully discrete mixed finite element data assimilation schemes for the Navier-Stokes equations. Adv. Comput. Math. 46 (2020) 61. [CrossRef] [Google Scholar]
  27. D. Garg, E. Burman and J. Preuss, Data assimilation finite element method for the linearized Navier-Stokes equations with higher order polynomial approximation. Numer. Anal. (2023) DOI: 10.5281/zenodo.7442458. [Google Scholar]
  28. J.J. Heys, T.A. Manteuffel, S.F. McCormick, M. Milano, J. Westerdale and M. Belohlavek, Weighted least-squares finite elements based on particle imaging velocimetry data. J. Comput. Phys. 229 (2010) 107–118. [CrossRef] [MathSciNet] [Google Scholar]
  29. O.Y. Imanuvilov and M. Yamamoto, Global uniqueness in inverse boundary value problems for the Navier-Stokes equations and Lamé system in two dimensions. Inverse Probl. 31 (2015) 035004. [CrossRef] [Google Scholar]
  30. O.Y. Imanuvilov and M. Yamamoto, Remark on boundary data for inverse boundary value problems for the Navier-Stokes equations [Addendum to MR3319370]. Inverse Probl. 31 (2015) 109401. [CrossRef] [Google Scholar]
  31. V. Isakov, Inverse problems for partial differential equations, 2nd edition. In Vol. 127 of Applied Mathematical Sciences. Springer, New York (2006). [Google Scholar]
  32. K. Ito and B. Jin, Inverse problems. In Vol. 22 of Series on Applied Mathematics. Tikhonov theory and algorithms, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2015). [Google Scholar]
  33. F. John, Continuous dependence on data for solutions of partial differential equations with a prescribed bound. Commun. Pure Appl. Math. 13 (1960) 551–585. [CrossRef] [Google Scholar]
  34. R. Lattès and J.-L. Lions, Méthode de quasi-réversibilité et applications. Travaux et Recherches Mathématiques, No. 15. Dunod, Paris (1967). [Google Scholar]
  35. C.-L. Lin, G. Uhlmann and J.-N. Wang, Optimal three-ball inequalities and quantitative uniqueness for the Stokes system. Discrete Contin. Dyn. Syst. 28 (2010) 1273–1290. [CrossRef] [MathSciNet] [Google Scholar]
  36. A. Schwarz and R.P. Dwight, Data assimilation for Navier-Stokes using the least-squares finite-element method. Int. J. Uncertain Quantif. 8 (2018) 383–403. [CrossRef] [MathSciNet] [Google Scholar]
  37. M.W. Scroggs, I.A. Baratta, C.N. Richardson and G.N. Wells, Basix: a runtime finite element basis evaluation library. J. Open Source Softw. 7 (2022) 3982. [CrossRef] [Google Scholar]
  38. A.N. Tikhonov and V.Y. Arsenin, Solutions of ill-posed problems. Scripta Series in Mathematics. V. H. Winston & Sons, Washington, D. C., John Wiley & Sons, New York-Toronto, Ont.-London (1977). Translated from the Russian, Preface by translation editor Fritz John. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you