Open Access
Volume 58, Number 1, January-February 2024
Page(s) 247 - 272
Published online 16 February 2024
  1. P.F. Antonietti, L. Mascotto and M. Verani, A multigrid algorithm for the p-version of the virtual element method. ESAIM: Math. Modell. Numer. Anal. 52 (2018) 337–364. [CrossRef] [EDP Sciences] [Google Scholar]
  2. M. Aurada, M. Feischl, T. Führer, M. Karkulik and D. Praetorius, Efficiency and optimality of some weighted-residual error estimator for adaptive 2D boundary element methods. Comput. Methods Appl. Math. 13 (2013) 305–332. [CrossRef] [MathSciNet] [Google Scholar]
  3. D. Bai and A. Brandt, Local mesh refinement multilevel techniques. SIAM J. Sci. Stat. Comput. 8 (1987) 109–134. [CrossRef] [Google Scholar]
  4. R.E. Bank, T.F. Dupont and H. Yserentant, The hierarchical basis multigrid method. Numer. Math. 52 (1988) 427–458. [CrossRef] [MathSciNet] [Google Scholar]
  5. P. Binev, W. Dahmen and R. DeVore, Adaptive finite element methods with convergence rates. Numer. Math. 97 (2004): 219–268. [Google Scholar]
  6. J.H. Bramble, J.E. Pasciak and A.H. Schatz, The construction of preconditioners for elliptic problems by substructuring. I. Math. Comput. 47 (1986) 103–134. [Google Scholar]
  7. J.H. Bramble, J.E. Pasciak and J. Xu, Parallel multilevel preconditioners, in Numerical Analysis 1989 (Dundee, 1989). Vol. 228 of Pitman Res. Notes Math. Ser. Longman Sci. Tech.. Harlow (1990) 23–39. [Google Scholar]
  8. A. Brandt, S. McCormick and J. Ruge, Algebraic multigrid (AMG) for sparse matrix equations, in Sparsity and its Applications. Cambridge Univ. Press, Cambridge (1985) 257–284. [Google Scholar]
  9. P.D. Brubeck and P.E. Farrell, A scalable and robust vertex-star relaxation for high-order FEM. SIAM J. Sci. Comput. 44 (2022) 2991. [Google Scholar]
  10. M. Brunner, M. Innerberger, A. Miraçi, D. Praetorius, J. Streitberger and P. Heid, Adaptive FEM with quasi-optimal overall cost for nonsymmetric linear elliptic PDEs. IMA J. Numer. Anal. (2023). [Google Scholar]
  11. C. Canuto, R.H. Nochetto, R. Stevenson and M. Verani, Convergence and optimality of hp-AFEM. Numer. Math. 135 (2017) 1073–1119. [CrossRef] [MathSciNet] [Google Scholar]
  12. C. Carstensen, M. Feischl, M. Page and D. Praetorius, Axioms of adaptivity. Comput. Math. Appl. 67 (2014) 1195–1253. [PubMed] [Google Scholar]
  13. J.M. Cascón, C. Kreuzer, R.H. Nochetto and K.G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46 (2008) 2524–2550. [CrossRef] [MathSciNet] [Google Scholar]
  14. L. Chen, R.H. Nochetto and J. Xu, Optimal multilevel methods for graded bisection grids. Numer. Math. 120 (2012) 1–34. [Google Scholar]
  15. D.A. Di Pietro, F. Hülsemann, P. Matalon, P. Mycek, U. Rüde and D. Ruiz, An h-multigrid method for hybrid high-order discretizations. SIAM J. Sci. Comput. 43 (2021) S839–S861. [CrossRef] [Google Scholar]
  16. L. Diening, L. Gehring and J. Storn, Adaptive mesh refinement for arbitrary initial triangulations. Preprint arXiv:2306.02674 (2023). [Google Scholar]
  17. W. Dörfler, A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33 (1996) 1106–1124. [Google Scholar]
  18. G. Gantner, A. Haberl, D. Praetorius and S. Schimanko, Rate optimality of adaptive finite element methods with respect to overall computational costs. Math. Comput. 90 (2021) 2011–2040. [CrossRef] [Google Scholar]
  19. W. Hackbusch, Multigrid Methods and Applications. Vol. 4 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1985) xiv+377. [Google Scholar]
  20. W. Heinrichs, Line relaxation for spectral multigrid methods. J. Comput. Phys. 77 (1988) 166–182. [CrossRef] [MathSciNet] [Google Scholar]
  21. R. Hiptmair, H. Wu and W. Zheng, Uniform convergence of adaptive multigrid methods for elliptic problems and Maxwell’s equations. Numer. Math. Theory Methods Appl. 5 (2012) 297–332. [CrossRef] [MathSciNet] [Google Scholar]
  22. M. Innerberger and D. Praetorius, MooAFEM: an object oriented matlab code for higher-order adaptive FEM for (nonlinear) elliptic PDEs. Appl. Math. Comput. 442 (2023) 127731. [Google Scholar]
  23. M. Karkulik, D. Pavlicek and D. Praetorius, On 2D newest vertex bisection: optimality of mesh-closure and H1-stability of L2-projection. Constr. Approx. 38 (2013) 213–234. [Google Scholar]
  24. A. Miraçi, J. Papež and M. Vohralík, A multilevel algebraic error estimator and the corresponding iterative solver with p-robust behavior. SIAM J. Numer. Anal. 58 (2019) 2856–2884. [Google Scholar]
  25. A. Miraçi, J. Papež and M. Vohralík, A-posteriori-steered p-robust multigrid with optimal step-sizes and adaptive number of smoothing steps. SIAM J. Sci. Comput. 43 (2021) S117–S145. [CrossRef] [Google Scholar]
  26. P. Morin, R.H. Nochetto and K.G. Siebert, Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38 (2000) 466–488. [Google Scholar]
  27. P. Oswald, Multilevel Finite Element Approximation: Theory and Applications. Teubner Skripten zur Numerik [Teubner Scripts on Numerical Mathematics]. B.G. Teubner Stuttgart (1994). [CrossRef] [Google Scholar]
  28. L.F. Pavarino, Additive Schwarz methods for the p-version finite element method. Numer. Math. 66 (1994) 493–515. [Google Scholar]
  29. C.-M. Pfeiler and D. Praetorius, Dörfler marking with minimal cardinality is a linear complexity problem. Math. Comput. 89 (2020) 2735–2752. [Google Scholar]
  30. U. Rüde, Mathematical and Computational Techniques for Multilevel Adaptive Methods. Vol. 13 of Frontiers in Applied Mathematics. SIAM, Philadelphia, PA (1993) xii+140. [Google Scholar]
  31. U. Rüde, Fully adaptive multigrid methods. SIAM J. Numer. Anal. 30 (1993) 230–248. [CrossRef] [MathSciNet] [Google Scholar]
  32. J. Schöberl, J.M. Melenk, C. Pechstein and S. Zaglmayr, Additive Schwarz preconditioning for p-version triangular and tetra-hedral finite elements. IMA J. Numer. Anal. 28 (2008) 1–24. [Google Scholar]
  33. R. Stevenson, Optimality of a standard adaptive finite element method. Found. Comput. Math. 7 (2007) 245–269. [Google Scholar]
  34. R. Stevenson, The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77 (2008) 227–241. [Google Scholar]
  35. C.T. Traxler, An algorithm for adaptive mesh refinement in n dimensions. Computing 59 (1997) 115–137. [CrossRef] [MathSciNet] [Google Scholar]
  36. H. Wu and Z. Chen, Uniform convergence of multigrid V-cycle on adaptively refined finite element meshes for second order elliptic problems. Sci. China Ser. 49 (2006) 1405–1429. [CrossRef] [MathSciNet] [Google Scholar]
  37. J. Wu and H. Zheng, Uniform convergence of multigrid methods for adaptive meshes. Appl. Numer. Math. 113 (2017) 109–123. [CrossRef] [MathSciNet] [Google Scholar]
  38. X. Zhang, Multilevel Schwarz methods. Numer. Math. 63 (1992) 521–539. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you