Open Access
Issue
ESAIM: M2AN
Volume 58, Number 1, January-February 2024
Page(s) 47 - 77
DOI https://doi.org/10.1051/m2an/2023093
Published online 16 January 2024
  1. K.R. Arun, R. Ghorai and M. Kar, An asymptotic preserving and energy stable scheme for the barotropic Euler system in the incompressible limit. J. Sci. Comput. 97 (2023) 73. [CrossRef] [Google Scholar]
  2. E.J. Balder, Lectures on Young measure theory and its applications in economics. Vol. 31 (2000) 1–69. Workshop on Measure Theory and Real Analysis (Italian) (Grado, 1997). [Google Scholar]
  3. J.M. Ball, A version of the fundamental theorem for Young measures, in PDEs and continuum models of phase transitions (Nice, 1988). Vol. 344 of Lecture Notes in Phys. Springer, Berlin (1988) 207–215. [Google Scholar]
  4. A. Bressan and M. Lewicka, A uniqueness condition for hyperbolic systems of conservation laws. Discrete Contin. Dyn. Syst. 6 (2000) 673–682. [Google Scholar]
  5. A. Bressan, G. Crasta and B. Piccoli, Well-posedness of the Cauchy problem for n × n systems of conservation laws. Mem. Amer. Math. Soc. 146 (2000) viii+134. [Google Scholar]
  6. J. Březina and E. Feireisl, Measure-valued solutions to the complete Euler system. J. Math. Soc. Jpn. 70 (2018) 1227–1245. [Google Scholar]
  7. G.-Q. Chen and H. Liu, Formation of δ-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids. SIAM J. Math. Anal. 34 (2003) 925–938. [CrossRef] [MathSciNet] [Google Scholar]
  8. E. Chiodaroli, C. De Lellis and O. Kreml, Global ill-posedness of the isentropic system of gas dynamics. Comm. Pure Appl. Math. 68 (2015) 1157–1190. [CrossRef] [MathSciNet] [Google Scholar]
  9. F. Couderc, A. Duran and J.-P. Vila, An explicit asymptotic preserving low Froude scheme for the multilayer shallow water model with density stratification. J. Comput. Phys. 343 (2017) 235–270. [CrossRef] [MathSciNet] [Google Scholar]
  10. C. De Lellis and L. Székelyhidi, Jr., On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195 (2010) 225–260. [CrossRef] [MathSciNet] [Google Scholar]
  11. K. Deimling, Nonlinear Functional Analysis. Springer-Verlag, Berlin (1985). [Google Scholar]
  12. G. Dimarco, R. Loubère and M.-H. Vignal, Study of a new asymptotic preserving scheme for the Euler system in the low Mach number limit. SIAM J. Sci. Comput. 39 (2017) A2099–A2128. [Google Scholar]
  13. R.J. DiPerna, Measure-valued solutions to conservation laws. Arch. Ration. Mech. Anal. 88 (1985) 223–270. [CrossRef] [Google Scholar]
  14. R.J. DiPerna and A.J. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations. Comm. Math. Phys. 108 (1987) 667–689. [CrossRef] [MathSciNet] [Google Scholar]
  15. A. Duran, J.-P. Vila and R. Baraille, Semi-implicit staggered mesh scheme for the multi-layer shallow water system. C. R. Math. Acad. Sci. Paris 355 (2017) 1298–1306. [CrossRef] [MathSciNet] [Google Scholar]
  16. A. Duran, J.-P. Vila and R. Baraille, Energy-stable staggered schemes for the Shallow Water equations. J. Comput. Phys. 401 (2020) 109051. [CrossRef] [MathSciNet] [Google Scholar]
  17. R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of Numerical Analysis. Vol. VII. North-Holland, Amsterdam (2000) 713–1020. [Google Scholar]
  18. E. Feireisl, P. Gwiazda, A. Świerczewska Gwiazda and E. Wiedemann, Dissipative measure-valued solutions to the compressible Navier-Stokes system. Calc. Var. Part. Differ. Equ. 55 (2016) 141. [CrossRef] [Google Scholar]
  19. E. Feireisl, S.S. Ghoshal and A. Jana, On uniqueness of dissipative solutions to the isentropic Euler system. Comm. Part. Differ. Equ. 44 (2019) 1285–1298. [CrossRef] [Google Scholar]
  20. E. Feireisl, M. Lukáčová-Medvid’ová, H. Mizerová and B. She, Convergence of a finite volume scheme for the compressible Navier-Stokes system. ESAIM Math. Model. Numer. Anal. 53 (2019) 1957–1979. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  21. E. Feireisl, C. Klingenberg, O. Kreml and S. Markfelder, On oscillatory solutions to the complete Euler system. J. Differ. Equ. 269 (2020) 1521–1543. [CrossRef] [Google Scholar]
  22. E. Feireisl, M. Lukáčová-Medvid’ová and H. Mizerová, Convergence of finite volume schemes for the Euler equations via dissipative measure-valued solutions. Found. Comput. Math. 20 (2020) 923–966. [CrossRef] [MathSciNet] [Google Scholar]
  23. E. Feireisl, M. Lukáčová-Medviďová and H. Mizerová, Ƙ-convergence as a new tool in numerical analysis. IMA J. Numer. Anal. 40 (2020) 2227–2255. [CrossRef] [MathSciNet] [Google Scholar]
  24. E. Feireisl, M. Lukáčová-Medvid’ová, H. Mizerová and B. She, Numerical Analysis of Compressible Fluid Flows. Vol. 20 of MS&A. Modeling, Simulation and Applications. Springer, Cham (2021). [Google Scholar]
  25. E. Feireisl, M. Lukáčová-Medvid’ová, B. She and Y. Wang, Computing oscillatory solutions of the Euler system via Ƙ-convergence. Math. Models Methods Appl. Sci. 31 (2021) 537–576. [CrossRef] [MathSciNet] [Google Scholar]
  26. U.S. Fjordholm, S. Mishra and E. Tadmor, Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal. 50 (2012) 544–573. [Google Scholar]
  27. U.S. Fjordholm, S. Mishra and E. Tadmor, On the computation of measure-valued solutions. Acta Numer. 25 (2016) 567–679. [Google Scholar]
  28. U.S. Fjordholm, R. Käppeli, S. Mishra and E. Tadmor, Construction of approximate entropy measure-valued solutions for hyperbolic systems of conservation laws. Found. Comput. Math. 17 (2017) 763–827. [CrossRef] [MathSciNet] [Google Scholar]
  29. T. Gallouët, R. Herbin and J.-C. Latché, On the weak consistency of finite volumes schemes for conservation laws on general meshes. SeMA J. 76 (2019) 581–594. [CrossRef] [MathSciNet] [Google Scholar]
  30. T. Gallouët, D. Maltese and A. Novotny, Error estimates for the implicit MAC scheme for the compressible Navier-Stokes equations. Numer. Math. 141 (2019) 495–567. [CrossRef] [MathSciNet] [Google Scholar]
  31. E. Godlewski and P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, 2nd edition. Vol. 118 of Applied Mathematical Sciences. Springer-Verlag, New York (2021). [CrossRef] [Google Scholar]
  32. N. Grenier, J.-P. Vila and P. Villedieu, An accurate low-Mach scheme for a compressible two-fluid model applied to free-surface flows. J. Comput. Phys. 252 (2013) 1–19. [CrossRef] [MathSciNet] [Google Scholar]
  33. P. Gwiazda, A. Świerczewska Gwiazda and E. Wiedemann, Weak-strong uniqueness for measure-valued solutions of some compressible fluid models. Nonlinearity 28 (2015) 3873–3890. [CrossRef] [MathSciNet] [Google Scholar]
  34. R. Herbin and J.-C. Latché, A class of staggered schemes for the compressible Euler equations, in Numerical Methods and Applications. Vol. 11189 of Lecture Notes in Comput. Sci. Springer, Cham (2019) 15–26. [CrossRef] [Google Scholar]
  35. R. Herbin, W. Kheriji and J.-C. Latché, On some implicit and semi-implicit staggered schemes for the shallow water and Euler equations. ESAIM Math. Model. Numer. Anal. 48 (2014) 1807–1857. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  36. R. Herbin, J.-C. Latché and T.T. Nguyen, Consistent segregated staggered schemes with explicit steps for the isentropic and full Euler equations. ESAIM Math. Model. Numer. Anal. 52 (2018) 893–944. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  37. R. Herbin, J.-C. Latché and C. Zaza, A cell-centred pressure-correction scheme for the compressible Euler equations. IMA J. Numer. Anal. 40 (2020) 1792–1837. [CrossRef] [MathSciNet] [Google Scholar]
  38. R. Herbin, J.-C. Latché and K. Saleh, Low Mach number limit of some staggered schemes for compressible barotropic flows. Math. Comp. 90 (2021) 1039–1087. [CrossRef] [MathSciNet] [Google Scholar]
  39. I. Jegdić, Numerical study of singular and delta shock solutions using a large time step method. Appl. Appl. Math. 13 (2018) 1110–1122. [MathSciNet] [Google Scholar]
  40. E. Jones et al. SciPy: Open Source Scientific Tools for Python (2001) https://www.scipy.org/index.html. [Google Scholar]
  41. J. Komlós, A generalization of a problem of Steinhaus. Acta Math. Acad. Sci. Hungar. 18 (1967) 217–229. [CrossRef] [MathSciNet] [Google Scholar]
  42. S.N. Kružkov, First order quasilinear equations in several independent variables. Math. USSR-Sbornik 10 (1970) 217–243. [CrossRef] [Google Scholar]
  43. R.J. LeVeque, Numerical Methods for Conservation Laws. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel (1990). [Google Scholar]
  44. J. Málek, J. Nečas, M. Rokyta and M. Růžička, Weak and Measure-Valued Solutions to Evolutionary PDEs. Vol. 13 of Applied Mathematics and Mathematical Computation. Chapman & Hall, London (1996). [Google Scholar]
  45. J. Neustupa, Measure-valued solutions of the Euler and Navier-Stokes equations for compressible barotropic fluids. Math. Nachr. 163 (1993) 217–227. [CrossRef] [MathSciNet] [Google Scholar]
  46. L. Nirenberg, Topics in Nonlinear Functional Analysis. Vol. 6 of Courant Lecture Notes in Mathematics. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI (2001). Chapter 6 by E. Zehnder, Notes by R.A. Artino. Revised reprint of the 1974 original. [CrossRef] [Google Scholar]
  47. D. O’Regan, Y.J. Cho and Y.-Q. Chen, Topological Degree Theory and Applications. Vol 6 of Series in Mathematical Analysis and Applications. Chapman & Hall/CRC, Boca Raton, FL (2006). [Google Scholar]
  48. M. Parisot and J.-P. Vila, Centered-potential regularization for the advection upstream splitting method. SIAM J. Numer. Anal. 54 (2016) 3083–3104. [Google Scholar]
  49. P. Pedregal, Parametrized Measures and Variational Principles. Vol. 30 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Verlag, Basel (1997). [CrossRef] [Google Scholar]
  50. D.J. Price, Modelling discontinuities and Kelvin-Helmholtz instabilities in SPH. J. Comput. Phys. 227 (2008) 10040–10057. [NASA ADS] [CrossRef] [Google Scholar]
  51. E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer-Verlag, Berlin (1997). [CrossRef] [Google Scholar]
  52. E. Wiedemann, Weak-strong uniqueness in fluid dynamics, in Partial Differential Equations in Fluid Mechanics. Vol. 452 of London Math. Soc. Lecture Note Ser. Cambridge Univ. Press, Cambridge (2018) 289–326. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you