Open Access
Issue
ESAIM: M2AN
Volume 58, Number 1, January-February 2024
Page(s) 79 - 105
DOI https://doi.org/10.1051/m2an/2023089
Published online 16 January 2024
  1. A. Abdulle and Y. Bai, Reduced basis finite element heterogeneous multiscale method for high-order discretizations of elliptic homogenization problems. J. Comput. Phys. 231 (2012) 7014–7036. [Google Scholar]
  2. A. Abdulle and Y. Bai, Adaptive reduced basis finite element heterogeneous multiscale method. Comput. Methods Appl. Mech. Eng. 257 (2013) 203–220. [CrossRef] [Google Scholar]
  3. A. Abdulle and Y. Bai, Reduced-order modelling numerical homogenization. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 372 (2014) 20130388. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  4. A. Abdulle and A.D. Blasio, Numerical homogenization and model order reduction for multiscale inverse problems. Multiscale Model. Simul. 17 (2019) 399–433. [Google Scholar]
  5. A. Abdulle and P. Henning, A reduced basis localized orthogonal decomposition. J. Comput. Phys. 295 (2015) 379–401. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. Abdulle, Y. Bai and G. Vilmart, An offline–online homogenization strategy to solve quasilinear two-scale problems at the cost of one-scale problems. Int. J. Numer. Methods Eng. 99 (2014) 469–486. [CrossRef] [Google Scholar]
  7. G. Allaire, Shape Optimization by the Homogenization Method. Vol. 146. Springer Science & Business Media (2012). [Google Scholar]
  8. G. Allaire, C. Dapogny, A. Faure and G. Michailidis, Shape optimization of a layer by layer mechanical constraint for additive manufacturing. C. R. Math. 355 (2017) 699–717. [CrossRef] [MathSciNet] [Google Scholar]
  9. R. Altmann, P. Henning and D. Peterseim, Numerical homogenization beyond scale separation. Acta Numer. 30 (2021) 1–86. [CrossRef] [MathSciNet] [Google Scholar]
  10. I. Babuska and R. Lipton, Optimal local approximation spaces for generalized finite element methods with application to multiscale problems. Multiscale Model. Simul. 9 (2011) 373–406. [Google Scholar]
  11. I. Babuška, R. Lipton, P. Sinz and M. Stuebner, Multiscale-spectral GFEM and optimal oversampling. Comput. Methods Appl. Mech. Eng. 364 (2020) 112960. [CrossRef] [Google Scholar]
  12. S. Banholzer, T. Keil, M. Ohlberger, L. Mechelli, F. Schindler and S. Volkwein, An adaptive projected Newton non-conforming dual approach for trust-region reduced basis approximation of PDE-constrained parameter optimization. Pure Appl. Funct. Anal. 7 (2022) 1561–1596. [MathSciNet] [Google Scholar]
  13. M. Barrault, Y. Maday, N.C. Nguyen and A.T. Patera, An “empirical interpolation” method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. 339 (2004) 667–672. [CrossRef] [MathSciNet] [Google Scholar]
  14. P. Benner, A. Cohen, M. Ohlberger and K. Willcox, editors. Model Reduction and Approximation: Theory and Algorithms. Vol. 15 of Computational Science & Engineering, SIAM, Philadelphia, PA (2017). [Google Scholar]
  15. S. Boyaval, Reduced-basis approach for homogenization beyond the periodic setting. Multiscale Model. Simul. 7 (2008) 466–494. [Google Scholar]
  16. D.L. Brown and D. Peterseim, A multiscale method for porous microstructures. Multiscale Model. Simul. 14 (2016) 1123–1152. [Google Scholar]
  17. A. Buhr, Exponential convergence of online enrichment in localized reduced basis methods. IFAC-PapersOnLine 51 (2018) 302–306. [CrossRef] [Google Scholar]
  18. A. Buhr, L. Iapichino, M. Ohlberger, S. Rave, F. Schindler and K. Smetana, Localized model reduction for parameterized problems, in Model Order Reduction, edited by Benner, et al.. Vol. 2. Walter De Gruyter GmbH, Berlin (2021). [Google Scholar]
  19. V.M. Calo, Y. Efendiev, J. Galvis and M. Ghommem, Multiscale empirical interpolation for solving nonlinear PDEs. J. Comput. Phys. 278 (2014) 204–220. [CrossRef] [MathSciNet] [Google Scholar]
  20. S. Chaturantabut and D.C. Sorensen, Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32 (2010) 2737–2764. [Google Scholar]
  21. R.E. Christiansen and O. Sigmund, Designing meta material slabs exhibiting negative refraction using topology optimization. Struct. Multidiscip. Optim. 54 (2016) 469–482. [CrossRef] [MathSciNet] [Google Scholar]
  22. E.T. Chung, Y. Efendiev and G. Li, An adaptive GMsFEM for high-contrast flow problems. J. Comput. Phys. 273 (2014) 54–76. [CrossRef] [MathSciNet] [Google Scholar]
  23. S. Conti, B. Geihe, M. Lenz and M. Rumpf, A posteriori modeling error estimates in the optimization of two-scale elastic composite materials. ESAIM Math. Model. Numer. Anal. 52 (2018) 1457–1476. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  24. M. Drohmann, B. Haasdonk and M. Ohlberger, Reduced basis approximation for nonlinear parametrized evolution equations based on empirical operator interpolation. SIAM J. Sci. Comput. 34 (2012) A937–A969. [Google Scholar]
  25. Y. Efendiev and T.Y. Hou, Multiscale Finite Element Methods: Theory and Applications. Vol. 4. Springer Science & Business Media (2009). [Google Scholar]
  26. Y. Efendiev, J. Galvis and T.Y. Hou, Generalized multiscale finite element methods (GMsFEM). J. Compu. Phys. 251 (2013) 116–135. [CrossRef] [Google Scholar]
  27. D. Elfverson, V. Ginting and P. Henning, On multiscale methods in Petrov-Galerkin formulation. Numer. Math. 131 (2015) 643–682. [CrossRef] [MathSciNet] [Google Scholar]
  28. S. Hain, M. Ohlberger, M. Radic and K. Urban, A hierarchical a posteriori error estimator for the reduced basis method. Adv. Comput. Math. 45 (2019) 2191–2214. [CrossRef] [MathSciNet] [Google Scholar]
  29. S.B. Hazra and V. Schulz, On efficient computation of the optimization problem arising in the inverse modeling of non-stationary multiphase multicomponent flow through porous media. Comput. Optim. Appl. 31 (2005) 69–85. [CrossRef] [MathSciNet] [Google Scholar]
  30. F. Hellman and T. Keil, gridlod. Code. https://github.com/fredrikhellman/gridlod. [Google Scholar]
  31. F. Hellman and A. Målqvist, Contrast independent localization of multiscale problems. Multiscale Model. Simul. 15 (2017) 1325–1355. [Google Scholar]
  32. F. Hellman and A. Målqvist, Numerical homogenization of elliptic PDEs with similar coefficients. Multiscale Model. Simul. 17 (2019) 650–674. [CrossRef] [MathSciNet] [Google Scholar]
  33. F. Hellman, T. Keil and A. Målqvist, Numerical upscaling of perturbed diffusion problems. SIAM J. Sci. Comput. 42 (2020) A2014–A2036. [CrossRef] [Google Scholar]
  34. P. Henning, A. Målqvist and D. Peterseim, A localized orthogonal decomposition method for semi-linear elliptic problems. ESAIM Math. Model. Numer. Anal. 48 (2014) 1331–1349. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  35. P. Henning, M. Ohlberger and B. Schweizer, An adaptive multiscale finite element method. Multiscale Model. Simul. 12 (2014) 1078–1107. [Google Scholar]
  36. J.S. Hesthaven, S. Zhang and X. Zhu, Reduced basis multiscale finite element methods for elliptic problems. Multiscale Model. Simul. 13 (2015) 316–337. [Google Scholar]
  37. J.S. Hesthaven, G. Rozza and B. Stamm, Certified Reduced Basis Methods for Parametrized Partial Differential Equations: BCAM SpringerBriefs. SpringerBriefs in Mathematics. Springer, Cham; BCAM, Bilbao, Cham (2016). [CrossRef] [Google Scholar]
  38. M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE Constraints. Springer Netherlands (2009). [Google Scholar]
  39. T.Y. Hou and X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134 (1997) 169–189. [Google Scholar]
  40. T.J. Hughes, Multiscale phenomena: Green’s functions, the dirichlet-to-neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Eng. 127 (1995) 387–401. [CrossRef] [Google Scholar]
  41. T.J. Hughes, G.R. Feijóo, L. Mazzei and J.-B. Quincy, The variational multiscale method – a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166 (1998) 3–24. [Google Scholar]
  42. D.B.P. Huynh, G. Rozza, S. Sen and A.T. Patera, A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. C. R. Math. Acad. Sci. Paris 345 (2007) 473–478. [CrossRef] [MathSciNet] [Google Scholar]
  43. J.D. Jansen, Adjoint-based optimization of multi-phase flow through porous media – a review. Comput. Fluids 46 (2011) 40–51. [CrossRef] [MathSciNet] [Google Scholar]
  44. T. Keil, Software for: a relaxed localized trust-region reduced basis approach for optimization of multiscale problems (2023). https://doi.org/10.5281/zenodo.7821980. [Google Scholar]
  45. T. Keil and M. Ohlberger, Model reduction for large scale systems, in Large-Scale Scientific Computing. Vol. 13127 of Lecture Notes Comput. Sci. Springer, Cham (2022) 16–28. [CrossRef] [Google Scholar]
  46. T. Keil and S. Rave, An online efficient two-scale reduced basis approach for the localized orthogonal decomposition. SIAM J. Sci. Comput. 45 (2023) A1491–A1518. [CrossRef] [Google Scholar]
  47. T. Keil, L. Mechelli, M. Ohlberger, F. Schindler and S. Volkwein, A non-conforming dual approach for adaptive trust-region reduced basis approximation of PDE-constrained parameter optimization. ESAIM. Math. Modell. Numer. Anal. 55 (2021) 1239. [CrossRef] [EDP Sciences] [Google Scholar]
  48. C.T. Kelley, Iterative Methods for Optimization. Vol. 18. SIAM (1999). [CrossRef] [Google Scholar]
  49. M.G. Larson and A. Målqvist, Adaptive variational multiscale methods based on a posteriori error estimation: duality techniques for elliptic problems, in Multiscale Methods in Science and Engineering. Vol. 44 of Lect. Notes Comput. Sci. Eng. Springer, Berlin (2005) 181–193. [CrossRef] [Google Scholar]
  50. C. Ma and R. Scheichl, Error estimates for discrete generalized FEMs with locally optimal spectral approximations. Math. Comput. 91 (2022) 2539–2569. [Google Scholar]
  51. C. Ma, R. Scheichl and T. Dodwell, Novel design and analysis of generalized finite element methods based on locally optimal spectral approximations. SIAM J. Numer. Anal. 60 (2022) 244–273. [CrossRef] [MathSciNet] [Google Scholar]
  52. A. Målqvist and D. Peterseim, Localization of elliptic multiscale problems. Math. Comput. 83 (2014) 2583–2603. [Google Scholar]
  53. A. Målqvist and D. Peterseim, Numerical Homogenization by Localized Orthogonal Decomposition. SIAM (2020). [CrossRef] [Google Scholar]
  54. R. Milk, S. Rave and F. Schindler, pyMOR, Model Order Reduction with Python (2014). [Google Scholar]
  55. N.C. Nguyen, A multiscale reduced-basis method for parametrized elliptic partial differential equations with multiple scales. J. Comput. Phys. 227 (2008) 9807–9822. [CrossRef] [MathSciNet] [Google Scholar]
  56. M. Ohlberger, A posteriori error estimates for the heterogeneous multiscale finite element method for elliptic homogenization problems. Multiscale Model. Simul. 4 (2005) 88–114. [Google Scholar]
  57. M. Ohlberger and M. Schaefer, A reduced basis method for parameter optimization of multiscale problems, in Proceedings of ALGORITMY. Vol. 2012 (2012) 1–10. [Google Scholar]
  58. M. Ohlberger and F. Schindler, A-posteriori error estimates for the localized reduced basis multi-scale method, in FVCA VII-Methods and Theoretical Aspects. Vol. 77 of PROMS, edited J. Fuhrmann et al. Springer (2014) 421–429. [Google Scholar]
  59. M. Ohlberger and F. Schindler, Error control for the localized reduced basis multiscale method with adaptive on-line enrichment. SIAM J. Sci. Comput. 37 (2015) A2865–A2895. [Google Scholar]
  60. M. Ohlberger and B. Verfürth, A new heterogeneous multiscale method for the Helmholtz equation with high contrast. Multiscale Model. Simul. 16 (2018) 385–411. [Google Scholar]
  61. M. Ohlberger, M. Schaefer and F. Schindler, Localized Model Reduction in PDE Constrained Optimization, in Shape Optimization, Homogenization and Optimal Control, edited by V. Schulz and D. Seck. Springer, Cham (2018) 143–163. [CrossRef] [Google Scholar]
  62. M. Ohlberger, B. Schweizer, M. Urban and B. Verfürth, Mathematical analysis of transmission properties of electromagnetic meta-materials. Networks Heterogen. Media 15 (2020) 29–56. [CrossRef] [Google Scholar]
  63. D. Peterseim and R. Scheichl, Robust numerical upscaling of elliptic multiscale problems at high contrast. Comput. Methods Appl. Math. 16 (2016) 579–603. [Google Scholar]
  64. E. Qian, M. Grepl, K. Veroy and K. Willcox, A certified trust region reduced basis approach to PDE-constrained optimization. SIAM J. Sci. Comput. 39 (2017) S434–S460. [Google Scholar]
  65. A. Quarteroni, A. Manzoni and F. Negri, Reduced Basis Methods for Partial Differential Equations. Vol. 92 of La Matematica per il 3+2, 1 edition, Springer International Publishing, Cham (2016). [Google Scholar]
  66. J. Schleuß and K. Smetana, Optimal local approximation spaces for parabolic problems. Multiscale Model. Simul. 20 (2022) 551–582. [Google Scholar]
  67. K. Smetana and A.T. Patera, Optimal local approximation spaces for component-based static condensation procedures. SIAM J. Sci. Comput. 38 (2016) A3318–A3356. [CrossRef] [Google Scholar]
  68. F. Wein, N. Chen, N. Iqbal, M. Stingl and M. Avila, Topology optimization of unsaturated flows in multi-material porous media: application to a simple diaper model. Commun. Nonlinear Sci. Numer. Simul. 78 (2019) 104871. [CrossRef] [MathSciNet] [Google Scholar]
  69. E. Weinan and B. Engquist, The heterogeneous multi-scale method for homogenization problems, in Multiscale Methods in Science and Engineering. Vol. 44 of Lect. Notes Comput. Sci. Eng. Springer, Berlin (2005) 89–110. [CrossRef] [Google Scholar]
  70. E. Weinan, B. Engquist and Z. Huang, Heterogeneous multiscale method: a general methodology for multiscale modeling. Phys. Rev. B 67 (2003) 092101. [CrossRef] [Google Scholar]
  71. Y. Yue and K. Meerbergen, Accelerating optimization of parametric linear systems by model order reduction. SIAM J. Optim. 23 (2013) 1344–1370. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you