Open Access
Volume 58, Number 1, January-February 2024
Page(s) 1 - 22
Published online 16 January 2024
  1. H. Ammari, B. Li and J. Zou, Mathematical analysis of electromagnetic scattering by dielectric nanoparticles with high refractive indices. Trans. Am. Math. Soc. 376 (2023) 39–90. [Google Scholar]
  2. G. Bao, H. Zhang and J. Zou, Unique determination of periodic polyhedral structures by scattered electromagnetic fields. Trans. Am. Math. Soc. 363 (2011) 4527–4551. [CrossRef] [Google Scholar]
  3. A. Buffa, Remarks on the discretization of some noncoercive operator with applications to heterogeneous Maxwell equations. SIAM J. Numer. Anal. 43 (2005) 1–18. [CrossRef] [MathSciNet] [Google Scholar]
  4. A. Buffa and R. Hiptmair, A coercive combined field integral equation for electromagnetic scattering. SIAM J. Numer. Anal. 42 (2004) 621–640. [CrossRef] [MathSciNet] [Google Scholar]
  5. O. Cessenat, Application d’une nouvelle formulation variationnelle aux équations d’ondes harmoniques, Problèmes de Helmholtz 2D et de Maxwell 3D. Ph.D. Thesis, Université Paris IX Dauphine (1996). [Google Scholar]
  6. W. Chew, Waves and Fields in Inhomogeneous Media. IEEE, New York (1995). [Google Scholar]
  7. C. Geuzaine and J. Remacle, GMSH: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Meth. Eng. 79 (2009) 1309–1331. [CrossRef] [Google Scholar]
  8. R. Hiptmair, A. Moiola and I. Perugia, Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations. Math. Comput. 82 (2013) 247–268. [Google Scholar]
  9. Q. Hu and R. Song, A variant of the plane wave least squares method for the time-harmonic Maxwell’s equations. ESAIM: M2AN. Math. Model. Numer. Anal. 53 (2019) 85–103. [CrossRef] [EDP Sciences] [Google Scholar]
  10. Q. Hu and L. Yuan, A plane wave least-squares method for time-harmonic Maxwell’s equations in absorbing media. SIAM J. Sci. Comput. 36 (2014) A1911–A1936. [CrossRef] [Google Scholar]
  11. Q. Hu and L. Yuan, A plane wave method combined with local spectral elements for nonhomogeneous Helmholtz equation and time-harmonic Maxwell equations. Adv. Comput. Math. 44 (2018) 245–275. [CrossRef] [MathSciNet] [Google Scholar]
  12. Q. Hu and H. Zhang, Substructuring preconditioners for the systems arising from plane wave discretization of Helmholtz equations. SIAM J. Sci. Comput. 38 (2016) A2232–A2261. [CrossRef] [MathSciNet] [Google Scholar]
  13. L. Imbert-Gerard, F. Vico, L. Greengard and M. Ferrando, Integral equation methods for electrostatics, acoustics, and electromagnetics in smoothly varying anisotropic media. SIAM J. Numer. Anal. 57 (2019) 1020–1035. [CrossRef] [MathSciNet] [Google Scholar]
  14. J. Jackson, Classical Electrodynamics. Wiley, New York (1975). [Google Scholar]
  15. X. Jiang, W. Chen and C. Chen, Fast multipole accelerated boundary knot method for inhomogeneous Helmholtz problems. Eng. Anal. Bound. Elem. 37 (2013) 1239–1243. [CrossRef] [MathSciNet] [Google Scholar]
  16. L. Landau, E. Lifshitz and L. Pitaevskii, Electrodynamics of Continuous Media. Pergamon Press, Oxford (1984). [Google Scholar]
  17. Q. Lu, J. Wang, S. Shu and J. Peng, Two-level overlapping Schwarz methods based on local generalized eigenproblems for Hermitian variational problems. SIAM J. Sci. Comput. 44 (2022) A605–A635. [CrossRef] [Google Scholar]
  18. R. Marqués, F. Medina and R. Rafii-El-Idrissi, Role of bianisotropy in negative permeability and left-handed metamaterials. Phys. Rev. B 65 (2002) 144440. [CrossRef] [Google Scholar]
  19. A. Moiola, R. Hiptmair and I. Perugia, Plane wave approximation of homogeneous Helmholtz solutions. Z. Angew. Math. Phys. 62 (2011) 809–837. [CrossRef] [MathSciNet] [Google Scholar]
  20. Z. Sacks, D. Kingsland, R. Lee and J. Lee, A perfectly matched anisotropic absorber for use an absorbing boundary condition. IEEE Trans. Antennas Propag. 43 (1995) 1460–1463. [CrossRef] [Google Scholar]
  21. N. Sloan, Tables of spherical codes (with collaboration of R.H. Hardin, W.D. Smith and others) published electronically at (2000). [Google Scholar]
  22. L. Yuan, A combined scheme of the local spectral element method and the generalized plane wave discontinuous Galerkin method for the anisotropic Helmholtz equation. Appl. Numer. Math. 150 (2020) 341–360. [CrossRef] [MathSciNet] [Google Scholar]
  23. L. Yuan and Q. Hu, Error analysis of the plane wave discontinuous Galerkin method for Maxwell’s equations in anisotropic media. Commun. Comput. Phys. 25 (2019) 1496–1522. [CrossRef] [MathSciNet] [Google Scholar]
  24. L. Yuan and Q. Hu, Plane wave discontinuous Galerkin methods for the Helmholtz equation and Maxwell equations in anisotropic media. Comput. Math. Appl. 97 (2021) 355–374. [CrossRef] [MathSciNet] [Google Scholar]
  25. L. Yuan and Q. Hu, A discontinuous plane wave neural network method for Helmholtz equation and time-harmonic Maxwell’s equations. Submitted arXiv:2310.09527 (2023). [Google Scholar]
  26. M. Zhao, N. Zhu and L. Wang, The electromagnetic scattering from multiple arbitrarily shaped cavities with inhomogeneous anisotropic media. J. Comput. Phys. 489 (2023) 112274. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you