Open Access
Volume 58, Number 2, March-April 2024
Page(s) 673 - 694
Published online 16 April 2024
  1. K. Ait-Ameur, Y. Maday and M. Tajchman, Multi-step variant of the parareal algorithm, in Domain Decomposition Methods in Science and Engineering XXV, edited by R. Haynes, S. MacLachlan, X.-C. Cai, L. Halpern, H.H. Kim, A. Klawonn and O. Widlund. Springer International Publishing, Cham (2020) 393–400. [Google Scholar]
  2. K. Ait-Ameur, Y. Maday and M. Tajchman, Time-parallel algorithm for two phase flows simulation, in Numerical Simulation in Physics and Engineering: Trends and Applications; Lecture Notes of the XVIII ‘Jacques-Louis Lions’ Spanish-French School, edited by D. Greiner, M. Asensio and R. Montenegro (2021) 169–178. [Google Scholar]
  3. J. Astic, A. Bihain and M. Jerosolimski, The mixed Adams-BDF variable step size algorithm to simulate transient and long term phenomena in power systems. IEEE Trans. Power Syst. 9 (1994) 929–935. [Google Scholar]
  4. C. Audouze, M. Massot and S. Volz, Symplectic multi-time step parareal algorithms applied to molecular dynamics. (2009). [Google Scholar]
  5. F. Bashforth and J.C. Adams, Theories of Capillary Action. Cambridge University Press, Cambridge (1883). [Google Scholar]
  6. D.Q. Bui, C. Japhet, Y. Maday and P. Omnes, Coupling parareal with optimized Schwarz waveform relaxation for parabolic problems. SIAM J. Numer. Anal. 60 (2022) 913–939. [Google Scholar]
  7. B. Carrel, M. Gander and B. Vandereycken, Low-rank parareal: a low-rank parallel-in-time integrator. BIT Numer. Math. 63 (2023). [Google Scholar]
  8. A.J. Christlieb, C.B. Macdonald and B.W. Ong, Parallel high-order integrators. SIAM J. Sci. Comput. 32 (2010) 818–835. [Google Scholar]
  9. G. Dahlquist, Convergence and stability in the numerical integration of ordinary differential equations. Math. Scand. 4 (1956) 33–53. [Google Scholar]
  10. G. Dahlquist, Stability and error bounds in the numerical integration of ordinary differential equations. Trans. of the Royal Inst. of Techn., Nr. 130 (1959) 87. [Google Scholar]
  11. X. Dai and Y. Maday, Stable parareal in time method for first- and second-order hyperbolic systems. SIAM J. Sci. Comput. 35 (2013) A52–A78. [Google Scholar]
  12. X. Dai, C. Le Bris, F. Legoll and Y. Maday, Symmetric parareal algorithms for hamiltonian systems. ESAIM: M2AN 47 (2013) 717–742. [Google Scholar]
  13. J.R. Dormand and P.J. Prince, A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 6 (1980) 19–26. [Google Scholar]
  14. M. Emmett and M.L. Minion, Toward an efficient parallel in time method for partial differential equations. Commun. Appl. Math. Comput. Sci. 7 (2012) 105–132. [Google Scholar]
  15. R.D. Falgout, S. Friedhoff, T.V. Kolev, S.P. MacLachlan and J.B. Schroder, Parallel time integration with multigrid. SIAM J. Sci. Comput. 36 (2014) C635–C661. [Google Scholar]
  16. R. Falgout, S. Friedhoff, T. Kolev, S. MacLachlan, J. Schroder and S. Vandewalle, Multigrid methods with space–time concurrency. Comput. Vis. Sci. 18 (2017) 1–21. [Google Scholar]
  17. R.D. Falgout, M. Lecouvez and C.S. Woodward, A parallel-in-time algorithm for variable step multistep methods. J. Comput. Sci. 37 (2019) 101029. [Google Scholar]
  18. C. Farhat and M. Chandesris, Time-decomposed parallel time-integrators: theory and feasibility studies for fluid, structure, and fluid-structure applications. Int. J. Numer. Methods Eng. 58 (2003) 1397–1434. [Google Scholar]
  19. M.J. Gander, 50 years of time parallel time integration, in Multiple Shooting and Time Domain Decomposition Methods, edited by T. Carraro, M. Geiger, S. Körkel and R. Rannacher. Springer International Publishing, Cham (2015) 69–113. [Google Scholar]
  20. M.J. Gander and S. Güttel, PARAEXP: a parallel integrator for linear initial-value problems. SIAM J. Sci. Comput. 35 (2013) C123–C142. [Google Scholar]
  21. M.J. Gander and E. Hairer, Nonlinear convergence analysis for the parareal algorithm, in Domain Decomposition Methods in Science and Engineering XVII, edited by U. Langer, M. Discacciati, D.E. Keyes, O.B. Widlund and W. Zulehner. Springer Berlin Heidelberg, Berlin, Heidelberg (2008) 45–56. [Google Scholar]
  22. M.J. Gander and M. Neumüller, Analysis of a new space-time parallel multigrid algorithm for parabolic problems. SIAM J. Sci. Comput. 38 (2016) A2173–A2208. [Google Scholar]
  23. M.J. Gander, T. Lunet, D. Ruprecht and R. Speck, A unified analysis framework for iterative parallel-in-time algorithms. SIAM J. Sci. Comput. 45 (2023). [Google Scholar]
  24. C. Gear, Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, Upper Saddle River (1971). [Google Scholar]
  25. R. Guetat, Méthode de parallélisation en temps: application aux méthodes de décomposition de domaine. Ph.D. thesis, Paris VI. (2012). [Google Scholar]
  26. E. Hairer, S. Nørsett and G. Wanner, Solving Ordinary Differential Equations I Nonstiff Problems, 2nd edition. Springer, Berlin (2000). [Google Scholar]
  27. H. Jiménez-Pérez and J. Laskar, A time-parallel algorithm for almost integrable Hamiltonian systems. Preprint arXiv:1106.3694 (2011). [Google Scholar]
  28. J.-L. Lions, Y. Maday and G. Turinici, Résolution d’EDP par un schéma en temps pararéel. C. R. Acad. Sci. - Ser. I - Math. 332 (2001) 661–668. [Google Scholar]
  29. Y. Maday and O. Mula, An adaptive parareal algorithm. J. Comput. Appl. Math. 377 (2020) 112915. [Google Scholar]
  30. Y. Maday and E.M. Rønquist, Parallelization in time through tensor-product space-time solvers. C. R. Math. 346 (2008) 113–118. [Google Scholar]
  31. J. Nievergelt, Parallel methods for integrating ordinary differential equations. Commun. ACM 7 (1964) 731–733. [Google Scholar]
  32. B.W. Ong and J.B. Schroder, Applications of time parallelization. Comput. Vis. Sci. 23 (2020). [Google Scholar]
  33. A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations. Von Karman Institute for Fluid Dynamics (1996). [Google Scholar]
  34. M. Schreiber, P.S. Peixoto, T. Haut and B. Wingate, Beyond spatial scalability limitations with a massively parallel method for linear oscillatory problems. Int. J. High Perform. Comput. Appl. 32 (2018) 913–933. [Google Scholar]
  35. A. Toselli and O. Widlund, Domain Decomposition Methods: Algorithms and Theory. Springer Series in Computational Mathematics. Springer Berlin, Heidelberg (2005). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you