Open Access
Issue |
ESAIM: M2AN
Volume 58, Number 2, March-April 2024
|
|
---|---|---|
Page(s) | 639 - 671 | |
DOI | https://doi.org/10.1051/m2an/2024002 | |
Published online | 09 April 2024 |
- J. Baladron, D. Fasoli, O. Faugeras and J. Touboul, Mean-field description and propagation of chaos in networks of Hodgkin- Huxley and FitzHugh-Nagumo neurons. J. Math. Neurosci. 2 (2012) 10. [CrossRef] [Google Scholar]
- J. Bao and X. Huang, Approximations of McKean–Vlasov stochastic differential equations with irregular coefficients. J. Theor. Probab. 35 (2022) 1187–1215. [CrossRef] [Google Scholar]
- J. Bao, C. Reisinger, P. Ren and W. Stockinger, First-order convergence of Milstein schemes for McKean–Vlasov equations and interacting particle systems. Proc. Roy. Soc. London Ser. A 477 (2021) 20200258. [Google Scholar]
- M. Bauer, T. Meyer-Brandis and F. Proske, Strong solutions of mean-field stochastic differential equations with irregular drift. Electron. J. Probab. 23 (2018) 1–35. [CrossRef] [Google Scholar]
- D. Belomestny and J. Schoenmakers, Projected particle methods for solving McKean–Vlasov stochastic differential equations. SIAM J. Numer. Anal. 56 (2018) 3169–3195. [CrossRef] [MathSciNet] [Google Scholar]
- V.S. Borkar and K. Suresh Kumar, McKean–Vlasov limit in portfolio optimization. Stoch. Anal. Appl. 28 (2010) 884–906. [CrossRef] [MathSciNet] [Google Scholar]
- M. Bossy and D. Talay, A stochastic particle method for the McKean–Vlasov and the Burgers equation. Math. Comput. 66 (1997) 157–192. [CrossRef] [Google Scholar]
- D.A. Dawson, Critical dynamics and fluctuations for a mean-field model of cooperative behavior. J. Stat. Phys. 31 (1983) 29–85. [Google Scholar]
- S. Dereich, M. Scheutzow and R. Schottstedt, Constructive quantization: Approximation by empirical measures. Ann. Inst. Henri Poincare Probab. Stat. 49 (2013) 1183–1203. [MathSciNet] [Google Scholar]
- G. dos Reis, S. Engelhardt and G. Smith, Simulation of McKean–Vlasov SDEs with super-linear growth. IMA J. Numer. Anal. 42 (2022) 874–922. [CrossRef] [MathSciNet] [Google Scholar]
- G. Dos Reis, W. Salkeld and J. Tugaut. Freidlin-Wentzell LDP in path space for McKean–Vlasov equations and the functional iterated logarithm law. Ann. Appl. Probab. 29 (2019) 1487–1540. [CrossRef] [MathSciNet] [Google Scholar]
- S.S. Dragomir, Some gronwall type inequalities and applications. Sci. Dir. Work. Pap. (2003) 04. [Google Scholar]
- N. Fournier and A. Guillin, On the rate of convergence in Wasserstein distance of the empirical measure. Probab. Theory Relat. Fields 162 (2015) 707–738. [CrossRef] [Google Scholar]
- Q. Guo, W. Liu, X. Mao and R. Yue, The truncated Milstein method for stochastic differential equations with commutative noise. J. Comput. Appl. Math. 338 (2018) 298–310. [CrossRef] [MathSciNet] [Google Scholar]
- A.L. Haji-Ali and R. Tempone, Multilevel and multi-index monte carlo methods for the mckean–vlasov equation. Stat. Comput. 28 (2018) 923–935. [CrossRef] [MathSciNet] [Google Scholar]
- A.L. Haji-Ali, Hå. Hoel and R. Tempone, A simple approach to proving the existence, uniqueness, and strong and weak convergence rates for a broad class of McKean–Vlasov equations. Preprint: arXiv:2101.00886 (2021). [Google Scholar]
- J. Hoeksema, T. Holding, M. Maurelli and O. Tse, Large deviations for singularly interacting diffusions. Preprint: arXiv:2002.01295 (2020). [Google Scholar]
- S. Jin and L. Li, On the mean field limit of the random batch method for interacting particle systems. Sci. China Math. 65 (2022) 169–202. [CrossRef] [MathSciNet] [Google Scholar]
- S. Jin and L. Li, Random batch methods for classical and quantum interacting particle systems and statistical samplings. In Vol. 3 Active Particles. Springer (2022) 153–200. [CrossRef] [Google Scholar]
- S. Jin, L. Li and J. Liu, Random batch methods (RBM) for interacting particle systems. J. Comput. Phys. 400 (2020) 108877. [CrossRef] [MathSciNet] [Google Scholar]
- S. Jin, L. Li and J. Liu, Convergence of the random batch method for interacting particles with disparate species and weights. SIAM J. Numer. Anal. 59 (2021) 746–768. [CrossRef] [MathSciNet] [Google Scholar]
- S. Jin, L. Li, Z. Xu and Y. Zhao, A random batch Ewald method for particle systems with Coulomb interactions. SIAM J. Sci. Comput. 43 (2021) B937–B960. [CrossRef] [Google Scholar]
- V.N. Kolokoltsov. Nonlinear Markov Processes and Kinetic Equations, Vol. 182. Cambridge University Press (2010). [CrossRef] [Google Scholar]
- C. Kumar, N.C. Reisinger and W. Stockinger, Well-posedness and tamed schemes for McKean–Vlasov equations with common noise. Ann. Appl. Probab. 32 (2022) 3283–3330. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Li, X. Mao, Q. Song, F. Wu and G. Yin, Strong convergence of Euler-Maruyama schemes for McKean–Vlasov stochastic differential equations under local Lipschitz conditions of state variables. IMA J. Numer. Anal. (2022). [Google Scholar]
- X. Mao, Stochastic Differential Equations and Applications. Elsevier (2007). [Google Scholar]
- X. Mao, The truncated Euler-Maruyama method for stochastic differential equations. J. Comput. Appl. Math. 290 (2015) 370–384. [CrossRef] [MathSciNet] [Google Scholar]
- X. Mao, Convergence rates of the truncated Euler-Maruyama method for stochastic differential equations. J. Comput. Appl. Math. 296 (2016) 362–375. [CrossRef] [MathSciNet] [Google Scholar]
- H.P. McKean Jr., A class of Markov processes associated with nonlinear parabolic equations. Proc. Nat. Acad. Sci. USA 56 (1966) 1907. [CrossRef] [PubMed] [Google Scholar]
- Y. Mishura and A. Veretennikov, Existence and uniqueness theorems for solutions of McKean–Vlasov stochastic equations. Theory Probab. Math. Stat. 103 (2020) 59–101. [Google Scholar]
- H. Pham, Linear quadratic optimal control of conditional McKean–Vlasov equation with random coefficients and applications. Probab. Uncertain. Quant. Risk 1 (2016) 1–26. [CrossRef] [MathSciNet] [Google Scholar]
- N.B. Rached, A.L. Haji-Ali, S.M.S. Pillai and R. Tempone, Single level importance sampling for McKean–Vlasov stochastic differential equation. Preprint: arXiv:2207.06926 (2022). [Google Scholar]
- H. Robbins and S. Monro, A stochastic approximation method. Ann. Math. Stat. (1951) 400–407. [Google Scholar]
- A.S. Sznitman, Topics in propagation of chaos. In Ecole d’été de probabilités de Saint-Flour XIX–1989. Springer (1991) 165–251. [Google Scholar]
- Z. Wang, X. Zhao and R. Zhu, Gaussian fluctuations for interacting particle systems with singular kernels. Preprint: arXiv:2105.13201 (2021). [Google Scholar]
- J. Zhang, Topics in McKean–Vlasov equations: Rank-based dynamics and Markovian projection with applications in finance and stochastic control, Ph.D. thesis, Princeton University (2021). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.