Open Access
Issue |
ESAIM: M2AN
Volume 58, Number 2, March-April 2024
|
|
---|---|---|
Page(s) | 571 - 612 | |
DOI | https://doi.org/10.1051/m2an/2024007 | |
Published online | 12 April 2024 |
- F. Antonelli and A. Kohatsu-Higa, Rate of convergence of a particle method to the solution of the McKean-Vlasov equation. Ann. Appl. Probab. 12 (2002) 423–476. [CrossRef] [MathSciNet] [Google Scholar]
- J. Baladron, D. Fasoli, O. Faugeras and J. Touboul, Mean-field description and propagation of chaos in networks of Hodgkin- Huxley and FitzHugh-Nagumo neurons. J. Math. Neurosci. 2 (2012) 1–50. [CrossRef] [MathSciNet] [Google Scholar]
- F. Bolley, Separability and completeness for the Wasserstein distance. In: Séminaire de Probabilités XLI. Springer (2008) 371–377. [CrossRef] [Google Scholar]
- M. Bossy and D. Talay, A stochastic particle method for the McKean-Vlasov and the Burgers equation. Math. Comput. 66 (1997) 157–192. [CrossRef] [Google Scholar]
- M. Bossy, O. Faugeras and D. Talay, Clarification and complement to “Mean-field description and propagation of chaos in networks of Hodgkin–Huxley and FitzHugh–Nagumo neurons”. J. Math. Neurosci. 5 (2015) 1–23. [CrossRef] [MathSciNet] [Google Scholar]
- M. Bossy, J.-F. Jabir and K.M. Rodriguez, Instantaneous turbulent kinetic energy modelling based on lagrangian stochastic approach in CFD and application to wind energy. J. Comput. Phys. 464 (2022) 110929. [CrossRef] [Google Scholar]
- P. Cardaliaguet and C.-A. Lehalle, Mean field game of controls and an application to trade crowding. Math. Financ. Econ. 12 (2018) 335–363. [CrossRef] [MathSciNet] [Google Scholar]
- R. Carmona and F. Delarue, Probabilistic theory of mean field games with applications I-II. In Vol. 83 of Probability Theory and Stochastic Modelling. Mean field FBSDEs, control, and games, Springer, Cham (2018). [Google Scholar]
- J.-F. Chassagneux, L. Szpruch and A. Tse, Weak quantitative propagation of chaos via differential calculus on the space of measures. Ann. Appl. Probab. 32 (2022) 1929–1969. [MathSciNet] [Google Scholar]
- S. Delattre, S. Graf, H. Luschgy and G. Pagès, Quantization of probability distributions under norm-based distortion measures ii: Self-similar distributions. J. Math. Anal. Appl. 318 (2006) 507–516. [CrossRef] [MathSciNet] [Google Scholar]
- G. dos Reis, S. Engelhardt and G. Smith, Simulation of McKean–Vlasov SDEs with super-linear growth. IMA J. Numer. Anal. 42 (2022) 874–922. [CrossRef] [MathSciNet] [Google Scholar]
- D.A. Edwards, On the Kantorovich–Rubinstein theorem. Expo. Math. 29 (2011) 387–398. [CrossRef] [MathSciNet] [Google Scholar]
- N. Fournier and A. Guillin, On the rate of convergence in Wasserstein distance of the empirical measure. Probab. Theory Relat. Fields 162 (2015) 707–738. [CrossRef] [Google Scholar]
- J. G¨artner, On the McKean-Vlasov limit for interacting diffusions. Math. Nachr. 137 (1988) 197–248. [CrossRef] [MathSciNet] [Google Scholar]
- A.L. Gibbs and F.E. Su, On choosing and bounding probability metrics. Int. Stat. Rev. 70 (2002) 419–435. [CrossRef] [Google Scholar]
- E. Gobet, G. Pagès, H. Pham and J. Printems, Discretization and Simulation for a Class of SPDEs with Applications to Zakai and McKean-Vlasov Equations. Preprint LPMA (2005). [Google Scholar]
- S. Graf and H. Luschgy, Foundations of quantization for probability distributions. In Vol. 1730 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (2000). [CrossRef] [Google Scholar]
- R. Hegselmann and U. Krause. Opinion dynamics and bounded confidence models, analysis, and simulation. J. Artif. Soc. Soc. Simul. 5 (2002). [Google Scholar]
- M. Hoffmann and Y. Liu, A statistical approach for simulating the density solution of a McKean-Vlasov equation. Preprint: arXiv:2305.06876 (2023). [Google Scholar]
- E. Hopf, The partial differential equation ut + uux = μuxx. Commun. Pure Appl. Math. 3 (1950) 201–230. [CrossRef] [Google Scholar]
- A.K. Jain, Data clustering: 50 years beyond k-means. Pattern Recognit. Lett. 31 (2010) 651–666. [CrossRef] [Google Scholar]
- J.C. Kieffer, Exponential rate of convergence for Lloyd’s method. I. IEEE Trans. Inf. Theory 28 (1982) 205–210. [CrossRef] [Google Scholar]
- J.C. Kieffer, Uniqueness of locally optimal quantizer for log-concave density and convex error weighting function. IEEE Trans. Inf. Theory 29 (1983) 42–47. [CrossRef] [Google Scholar]
- D. Lacker, Mean Field Games and Interacting Particle Systems. Preprint (2018). [Google Scholar]
- J.-M. Lasry and P.-L. Lions, Mean-field games with a major player. C. R. Math. 356 (2018) 886–890. [CrossRef] [MathSciNet] [Google Scholar]
- V. Lemaire, An adaptive scheme for the approximation of dissipative systems. Stoch. Process. Appl. 117 (2007) 1491–1518. [CrossRef] [Google Scholar]
- Y. Liu, Optimal quantization: Limit theorems, clustering and simulation of the McKean-Vlasov equation, Ph.D. thesis, Sorbonne Université, UPMC, Laboratoire de Probabilites, Statistique et Modelisation (LPSM) (2019). [Google Scholar]
- Y. Liu and G. Pagès, Convergence rate of optimal quantization and application to the clustering performance of the empirical measure. J. Mach. Learn. Res. 21 (2020) 1–36. [Google Scholar]
- Y. Liu and G. Pagès, Functional convex order for the scaled McKean-Vlasov processes. Ann. Appl. Probab. 33 (2023) 4491–4527. [MathSciNet] [Google Scholar]
- S.P. Lloyd, Least squares quantization in PCM. IEEE Trans. Inf. Theory 28 (1982) 129–137. [CrossRef] [Google Scholar]
- H. Luschgy and G. Pagès, Functional quantization rate and mean regularity of processes with an application to Lévy processes. Ann. Appl. Probab. 18 (2008) 427–469. [CrossRef] [MathSciNet] [Google Scholar]
- N. Martzel and C. Aslangul, Mean-field treatment of the many-body Fokker–Planck equation. J. Phys. A: Math. General 34 (2001) 11225. [CrossRef] [Google Scholar]
- H.P. McKean, Propagation of chaos for a class of non-linear parabolic equations. In: Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7, Catholic Univ., 1967) (1967) 41–57. [Google Scholar]
- G. Pagès, Introduction to vector quantization and its applications for numerics. CEMRACS 2013—Model. Simul. Complex Syst. Stoch. Determini. Approac. 48 (2015) 29–79. [Google Scholar]
- G. Pagès, Numerical Probability. An introduction with applications to finance, Universitext, Springer, Cham (2018). [Google Scholar]
- G. Pagès and J. Printems, Optimal quadratic quantization for numerics: the Gaussian case. Monte Carlo Methods Appl. 9 (2003) 135–165. [CrossRef] [MathSciNet] [Google Scholar]
- G. Pagès and A. Sagna, Recursive marginal quantization of the Euler scheme of a diffusion process. Appl. Math. Finance 22 (2015) 463–498. [CrossRef] [MathSciNet] [Google Scholar]
- G. Pagès and J. Yu, Pointwise convergence of the Lloyd I algorithm in higher dimension. SIAM J. Control Optim. 54 (2016) 2354–2382. [CrossRef] [MathSciNet] [Google Scholar]
- G. Pages, H. Pham and J. Printems, An optimal markovian quantization algorithm for multi-dimensional stochastic control problems. Stoch. Dyn. 4 (2004) 501–545. [CrossRef] [Google Scholar]
- D. Pollard, Quantization and the method of K-means. IEEE Trans. Inf. Theory 28 (1982) 199–205. [CrossRef] [Google Scholar]
- A.-S. Sznitman, Topics in propagation of chaos. In École d’Été de Probabilités de Saint-Flour XIX—1989. In: Vol. 1464 of Lecture Notes in Math.. Springer, Berlin (1991) 165–251. [CrossRef] [Google Scholar]
- C. Villani, Optimal transport, old and new, In Vol. 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (2009). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.