Open Access
Issue
ESAIM: M2AN
Volume 58, Number 3, May-June 2024
Page(s) 993 - 1029
DOI https://doi.org/10.1051/m2an/2024025
Published online 10 June 2024
  1. G. Alberti, S. Bianchini and G. Crippa, Structure of level sets and Sard-type properties of Lipschitz maps. Ann. Sc. Norm. Super. Pisa Cl. Sci. 12 (2013) 863–902. [MathSciNet] [Google Scholar]
  2. A. Bejan, Convection Heat Transfer, 4th edition. J. Wiley & Sons (2013). [CrossRef] [Google Scholar]
  3. J. Bourgain, M.V. Korobkov and J. Kristensen, On the Morse–Sard property and level sets of Sobolev and BV functions. Rev. Mat. Iberoam. 29 (2013) 1–23. [CrossRef] [MathSciNet] [Google Scholar]
  4. N.L. Carothers, Real Analysis. Cambridge University Press, Cambridge (2000). [CrossRef] [Google Scholar]
  5. E. Casas and F. Tröltzsch, Numerical analysis of some optimal control problems governed by a class of quasilinear elliptic equations. ESAIM:COCV 17 (2011) 771–800. [CrossRef] [EDP Sciences] [Google Scholar]
  6. E. Casas and F. Tröltzsch, A general theorem on error estimates with application to a quasilinear elliptic optimal control problem. Comput. Optim. Appl. 53 (2012) 173–206. [CrossRef] [MathSciNet] [Google Scholar]
  7. E. Casas and V. Dhamo, Error estimates for the numerical approximation of Neumann control problems governed by a class of quasilinear elliptic equations. Comput. Optim. Appl. 52 (2012) 719–756. [CrossRef] [MathSciNet] [Google Scholar]
  8. C. Christof and G. Wachsmuth, No-gap second-order conditions via a directional curvature functional. SIAM J. Optim. 28 (2018) 2097–2130. [CrossRef] [MathSciNet] [Google Scholar]
  9. C. Clason, V.H. Nhu, and A. Rösch, No-gap second-order optimality conditions for optimal control of a non-smooth quasilinear elliptic equation. ESAIM: COCV 27 (2021) 62. [CrossRef] [EDP Sciences] [Google Scholar]
  10. G.-H. Cottet and E. Maitre, A level set method for fluid-structure interactions with immersed surfaces. Math. Models Methods Appl. Sci. 16 (2006) 415–438. [CrossRef] [MathSciNet] [Google Scholar]
  11. K. Deckelnick and M. Hinze, A note on the approximation of elliptic control problems with bang-bang controls. Comput. Optim. Appl. 51 (2012) 931–939. [CrossRef] [MathSciNet] [Google Scholar]
  12. L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Function, 4th edition. CRC Press, New York (1992). [Google Scholar]
  13. A. Figalli, A simple proof of the Morse–Sard theorem in Sobolev spaces. Proc. Am. Math. Soc. 136 (2008) 3675–3681. [CrossRef] [Google Scholar]
  14. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin, Heidelberg (2001). [Google Scholar]
  15. P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman Advanced Pub., Program (1985). [Google Scholar]
  16. V. Guillemin and A. Pollack, Differential Topology. American Mathematical Society, Providence, RI (1974). [Google Scholar]
  17. G. Leoni, A First Course in Sobolev Spaces, 2nd edition. American Mathematical Society, Providence, RI (2017). [CrossRef] [Google Scholar]
  18. J. Milnor, Topology from the Differentiable Viewpoint. University of Virginia Press (1965). [Google Scholar]
  19. V.H. Nhu, On the no-gap second-order optimality conditions for a non-smooth semilinear elliptic optimal control. Optimization 71 (2022) 4289–4319. [CrossRef] [MathSciNet] [Google Scholar]
  20. S. Osher and J.A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79 (1988) 12–49. [NASA ADS] [CrossRef] [Google Scholar]
  21. W. Rudin, Principles of Mathematical Analysis, 3rd edition. Mc Graw Hill Inc., New York (1976). [Google Scholar]
  22. A. Sard, The measure of the critical values of differentiable maps. Bull. Amer. Math. Soc. 48 (1942) 883–890. [CrossRef] [MathSciNet] [Google Scholar]
  23. J.A. Sethian, Curvature and the evolution of fronts. Commun. Math. Phys. 101 (1985) 487–499. [CrossRef] [Google Scholar]
  24. D. Wachsmuth and G. Wachsmuth, Second-order conditions for non-uniformly convex integrands: quadratic growth in L1. J. Nonsmooth Anal. Optim. 3 (2022) 8733. [CrossRef] [Google Scholar]
  25. Y.B. Zel’dovich and Y.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Academic Press (1966). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you