Open Access
Issue
ESAIM: M2AN
Volume 58, Number 3, May-June 2024
Page(s) 1031 - 1052
DOI https://doi.org/10.1051/m2an/2024018
Published online 10 June 2024
  1. V. Acary, M. Brémond and O. Huber, On solving frictional contact problems: formulations and comparisons of numerical methods. In: Advanced Topics in Nonsmooth Dynamics. Springer (2018). [Google Scholar]
  2. P. Ballard, The dynamics of discrete mechanical systems with perfect unilateral constraints. Arch. Ration. Mech. Anal. 154 (2000) 199–274. [CrossRef] [MathSciNet] [Google Scholar]
  3. P. Ballard and S. Basseville, Existence and uniqueness for dynamical unilateral contact with Coulomb friction: a model problem. ESAIM:M2AN 39 (2005) 59–77. [Google Scholar]
  4. P. Ballard and A. Charles, An overview of the formulation, existence and uniqueness issues for the initial value problem raised by the dynamics of discrete systems with unilateral contact and dry friction. Comptes Rendus Mécanique 346 (2018) 222–236. [Google Scholar]
  5. A. Bressan, Incompatibilità dei teoremi di esistenza e di unicità del moto per un tipo molto comune e regolare di sistemi meccanici. Ann. Sc. Norm. Super. Pisa - Cl. Sci. 14 (1960) 333–348. [Google Scholar]
  6. A. Charles and P. Ballard, Existence and uniqueness of solutions to dynamical unilateral contact problems with Coulomb friction: the case of a collection of points. ESAIM:M2AN 48 (2014) 1–25. [Google Scholar]
  7. C.R. Dance, A counterexample to analyticity in frictional dynamics. ESAIM:M2AN 56 (2022) 1437–1449. [Google Scholar]
  8. R. Featherstone, Rigid Body Dynamics Algorithms. Springer (2008). [Google Scholar]
  9. M. Geilinger, D. Hahn, J. Zehnder, M. B¨acher, B. Thomaszewski and S. Coros, ADD: Analytically differentiable dynamics for multi-body systems with frictional contact. ACM Trans. Graph. (TOG) 39 (2020) 1–15. [Google Scholar]
  10. C. Glocker, On frictionless impact models in rigid-body systems. Philos. Trans. Royal Soc. London Ser. A: Math. Phys. Eng. Sci. 359 (2001) 2385–2404. [Google Scholar]
  11. P. Henrici, Applied and Computational Complex Analysis. Volume 1: Power Series, Integration, Conformal Mapping, Location of Zeros (1974). [Google Scholar]
  12. J. Hwangbo, J. Lee and M. Hutter, Per-contact iteration method for solving contact dynamics. IEEE Robot. Autom. Lett. 3 (2018) 895–902. [Google Scholar]
  13. J.H. Jellett, A Treatise on the Theory of Friction. Hodges, Foster (1872). [Google Scholar]
  14. S. Kepley and T. Zhang, A constructive proof of the Cauchy-Kovalevskaya theorem for ordinary differential equations. J. Fixed Point Theory Appl. 23 (2021) 1–23. [Google Scholar]
  15. L. Lecornu, Sur la loi de Coulomb. Comptes rendus hebdomadaires des séances de l’Académie des sciences 140 (1905) 847–848. [Google Scholar]
  16. B. Malgrange, On sectorial solutions of ordinary differential equations. Banach Center Publ. 44 (1998) 173–174. [Google Scholar]
  17. M.D.P. Monteiro Marques, Inelastic shocks with or without friction: Existence results. In: Differential Inclusions in Nonsmooth Mechanical Problems. Springer (1993) 72–111. [Google Scholar]
  18. J.-J. Moreau, Application of convex analysis to some problems of dry friction. In: Trends in Applications of Pure Mathematics to Mechanics. Pitman (1977) 263–280. [Google Scholar]
  19. J.J. Moreau, Unilateral contact and dry friction in finite freedom dynamics. In: Nonsmooth Mechanics and Applications. Springer (1988) 1–82. [Google Scholar]
  20. J. Nestruev, Smooth Manifolds and Observables. Springer (2003). [Google Scholar]
  21. I. Niven, Formal power series. Am. Math. Mon. 76 (1969) 871–889. [Google Scholar]
  22. P. Painlevé, Sur les lois du frottement de glissement. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 121 (1895) 112–115. [Google Scholar]
  23. D. Percivale, Uniqueness in the elastic bounce problem, I. J. Differ. Equ. 56 (1985) 206–215. [Google Scholar]
  24. D. Percivale, Uniqueness in the elastic bounce problem, II. J. Differ. Equ. 90 (1991) 304–315. [CrossRef] [Google Scholar]
  25. Y. Qin, Integral and Discrete Inequalities and Their Applications. Volume II: Nonlinear Inequalities. Springer (2016). [Google Scholar]
  26. M. Schatzman, A class of nonlinear differential equations of second order in time. Nonlinear Anal. Theory Methods Appl. 2 (1978) 355–373. [Google Scholar]
  27. D.E. Stewart, Rigid-body dynamics with friction and impact. SIAM Rev. 42 (2000) 3–39. [Google Scholar]
  28. E. Todorov, T. Erez and Y. Tassa, MuJoCo: A physics engine for model-based control. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2012) 5026–5033. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you