Open Access
Issue
ESAIM: M2AN
Volume 58, Number 3, May-June 2024
Page(s) 833 - 856
DOI https://doi.org/10.1051/m2an/2024021
Published online 24 May 2024
  1. C. Alboin, J. Jaffré, J.E. Roberts and C. Serres, Modeling fractures as interfaces for flow and transport in porous media. In: Fluid Flow and Transport in Porous Media: Mathematical and Numerical Treatment 295 (2002) 13–24. [CrossRef] [Google Scholar]
  2. L. Barletti and C. Negulescu, Quantum transmission conditions for drift-diffusion equations describing charges in graphene with steep potentials. J. Stat. Phys. 171 (2018) 696–726. [CrossRef] [MathSciNet] [Google Scholar]
  3. L. Barletti, G. Nastasi, C. Negulescu and V. Romano, Mathematical modelling of charge transport in graphene heterojunctions. Kinet. Relat. Models 14 (2021) 407–427. [CrossRef] [MathSciNet] [Google Scholar]
  4. S. Bertoluzza, Analysis of a stabilized three-fields domain decomposition method. Numer. Math. 93 (2003) 611–634. [Google Scholar]
  5. S. Bertoluzza and A. Kunoth, Wavelet stabilization and preconditioning for domain decomposition. IMA J. Numer. Anal. 20 (2000) 533–559. [CrossRef] [MathSciNet] [Google Scholar]
  6. J.H. Bramble, J.E. Pasciak and A.H. Schatz, The construction of preconditioners for elliptic problems by substructuring. Math. Comput. 47 (1986) 103–134. [CrossRef] [Google Scholar]
  7. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. In Vol. 15 of Springer Series in Computational Mathematics. Springer-Verlag, New York (1991). [CrossRef] [Google Scholar]
  8. F. Brezzi and L.D. Marini, Error estimates for the Three-Field formulation with bubble stabilization. Math. Comput. 70 (2001) 911–934. [Google Scholar]
  9. F. Brezzi, L.D. Marini and P. Pietra, Méthodes d’éléments finis mixtes et schéma de Scharfetter-Gummel. C. R. Acad. Sci. Paris Sér. I Math. 305 (1987) 599–604. [MathSciNet] [Google Scholar]
  10. S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutiérrez, T.F. Heinz, S.S. Hong, J. Huang, A.F. Ismach and E. Johnston-Halperin, Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7 (2013) 2898–2926. [CrossRef] [PubMed] [Google Scholar]
  11. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov and A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81 (2009) 109–162. [CrossRef] [Google Scholar]
  12. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. Society for Industrial and Applied Mathematics (2002). [Google Scholar]
  13. V.E. Dorgan, M.-H. Bae and E. Pop, Mobility and saturation velocity in graphene on SiO2. Appl. Phys. Lett. 97 (2010) 082112. [CrossRef] [Google Scholar]
  14. R. El Hajj and F. Méhats, Analysis of models for quantum transport of electrons in graphene layers. Math. Models Methods Appl. Sci. 24 (2014) 2287–2310. [CrossRef] [MathSciNet] [Google Scholar]
  15. B Faermann, Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary elements methods. Part I. The two-dimensional case. IMA J. Numer. Anal. 20 (2000) 203–234. [CrossRef] [MathSciNet] [Google Scholar]
  16. J. Fang, W.G. Vandenberghe and M.V. Fischetti, Microscopic dielectric permittivities of graphene nanoribbons and graphene. Phys. Rev. B 94 (2016) 045318. [CrossRef] [Google Scholar]
  17. C.L. Fefferman and M.I. Weinstein, Wave packets in honeycomb structures and two-dimensional dirac equations. Commun. Math. Phys. 326 (2014) 251–286. [CrossRef] [Google Scholar]
  18. G. Fiori and G. Iannaccone, Simulation of Graphene Nanoribbon Field-Effect Transistors. IEEE Electron Device Lett. 28 (2007) 760–762. [CrossRef] [Google Scholar]
  19. H.K. Gummel, A self-consistent iterative scheme for one-dimensional steady state transistor calculations. IEEE Trans. Electron Devices 11 (1964) 455–465. [CrossRef] [Google Scholar]
  20. V. Hung Nguyen, A. Bournel, C. Chassat and P. Dollfus, Quantum transport of dirac fermions in graphene field effect transistors. In: 2010 International Conference on Simulation of Semiconductor Processes and Devices (2010) 9–12. [Google Scholar]
  21. D. Jimenez and O. Moldovan, Explicit drain-current model of graphene field-effect transistors targeting analog and radio-frequency applications. IEEE Trans. Electron Devices 58 (2011) 4049–4052. [CrossRef] [Google Scholar]
  22. M. Köppel, V. Martin, J. Jaffré and J.E. Roberts, A Lagrange multiplier method for a discrete fracture model for flow in porous media. Comput. Geosci. 23 (2019) 239–253. [CrossRef] [MathSciNet] [Google Scholar]
  23. J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Volume 1. Dunod, Paris (1968). [Google Scholar]
  24. L. Luca and V. Romano, Quantum corrected hydrodynamic models for charge transport in graphene. Ann. Phys. 406 (2019) 30–53. [CrossRef] [Google Scholar]
  25. V. Martin, J. Jaffré and J.E. Roberts, Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26 (2005) 1667–1691. [CrossRef] [MathSciNet] [Google Scholar]
  26. O. Morandi and F. Schürrer, Wigner model for quantum transport in graphene. J. Phys. A: Math. Theor. 44 (2011) 265301. [CrossRef] [Google Scholar]
  27. G. Nastasi and V. Romano, An efficient GFET structure. IEEE Trans. Electron Devices 68 (2021) 4729–4734. [CrossRef] [Google Scholar]
  28. Y. Ouyang, Y. Yoon and J. Guo, Scaling behaviors of graphene nanoribbon FETs: A three-dimensional quantum simulation study. IEEE Trans. Electron Devices 54 (2007) 2223–2231. [CrossRef] [Google Scholar]
  29. A.K. Upadhyay, A.K. Kushwaha and S.K. Vishvakarma, A unified scalable quasi-ballistic transport model of GFET for circuit simulations. IEEE Trans. Electron Devices 65 (2018) 739–746. [CrossRef] [Google Scholar]
  30. M. Xu, T. Lian, M. Shi and H. Chen, Graphene-like two-dimensional materials. Chem. Rev. 113 (2013) 3766–3798. [CrossRef] [PubMed] [Google Scholar]
  31. N. Zamponi and L. Barletti, Quantum electronic transport in graphene: A kinetic and fluid dynamical approach. Math. Methods Appl. Sci. 34 (2011) 807–818. [CrossRef] [MathSciNet] [Google Scholar]
  32. N. Zamponi and A. Jüngel, Two spinorial drift-diffusion models for quantum electron transport in graphene. Commun. Math. Sci. 11 (2013) 927–950. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you