Open Access
Issue
ESAIM: M2AN
Volume 58, Number 3, May-June 2024
Page(s) 857 - 880
DOI https://doi.org/10.1051/m2an/2024022
Published online 31 May 2024
  1. D.S. Bernstein and W. So, Some explicit formulas for the matrix exponential. IEEE Trans. Autom. Control 38 (1993) 1228–1232. [Google Scholar]
  2. W. Cai, Y. Wang and Y. Song, Numerical dispersion analysis of a multi-symplectic scheme for the three dimensional Maxwell’s equations. J. Comput. Phys. 234 (2013) 330–352. [Google Scholar]
  3. J. Cai, J. Hong, Y. Wang and Y. Gong, Two energy-conserved splitting methods for three-dimensional time-domain Maxwell’s equations and the convergence analysis. SIAM. J. Numer. Anal. 53 (2015) 1918–1940. [Google Scholar]
  4. J. Cai, J. Hong, Y. Wang and Y. Gong, Numerical analysis of AVF methods for three-dimensional time-domain Maxwell’s equations. J. Sci. Comput. 66 (2016) 141–176. [Google Scholar]
  5. C. Canuto and A. Quarteroni, Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comput. 38 (1982) 67–86. [Google Scholar]
  6. W. Chen, X. Li and D. Liang, Energy-conserved splitting FDTD methods for Maxwell’s equations. Numer. Math. 108 (2008) 445–485. [Google Scholar]
  7. W. Chen, X. Li and D. Liang, Energy-conserved splitting finite-difference time-domain methods for Maxwell’s equations in three dimensions. SIAM. J. Numer. Anal. 48 (2010) 1530–1554. [Google Scholar]
  8. B. Cockburn, F. Li and C.W. Shu, Locally divergence-free discontinuous Galerkin methods for the Maxwell equations. J. Comput. Phys. 194 (2004) 588–610. [Google Scholar]
  9. S. Descombes, S. Lanteri and L. Moya, Locally implicit time integration strategies in a discontinuous Galerkin method for Maxwell’s equations. J. Sci. Comput. 56 (2013) 190–218. [Google Scholar]
  10. S. Descombes, S. Lanteri and L. Moya, Locally implicit discontinuous Galerkin time domain method for electromagnetic wave propagation in dispersive media applied to numerical dosimetry in biological tissues. SIAM J. Sci. Comput. 38 (2016) A2611–A2633. [Google Scholar]
  11. R. Diehl, K. Busch and J. Niegemann, Comparison of low-storage Runge–Kutta schemes for discontinuous Galerkin time-domain simulations of Maxwell’s equations. J. Comput. Theo. Nano. 7 (2010) 1572–1580. [Google Scholar]
  12. H. Duan, J. Ma and J. Zou, Mixed finite element method with Gauss’s law enforced for Maxwell eigenproblem. SIAM J. Sci. Comput. 43 (2021) A3677–A3712. [Google Scholar]
  13. J. Eilinghoff, T. Jahnke and R. Schnaubelt, Error analysis of an energy preserving ADI splitting scheme for the Maxwell equations. SIAM J. Numer. Anal. 57 (2019) 1036–1057. [Google Scholar]
  14. H. Fahs, High-order leap-frog based discontinuous Galerkin method for the time-domain Maxwell equations on non-conforming simplicial meshes. Numer. Math. Theo. Meth. Appl. 2 (2009) 275–300. [Google Scholar]
  15. L. Gao, B. Zhang and D. Liang, The splitting finite-difference time-domain methods for Maxwell’s equations in two dimensions. J. Comput. Appl. Math. 205 (2007) 207–230. [Google Scholar]
  16. M.J. Grote and T. Mitkova, Explicit local time-stepping methods for Maxwell’s equations. J. Comput. Appl. Math. 234 (2010) 3283–3302. [Google Scholar]
  17. E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2006). [Google Scholar]
  18. E. Hairer, C. Lubich and B. Wang, A filtered Boris algorithm for charged-particle dynamics in a strong magnetic field. Numer. Math. 144 (2020) 787–809. [Google Scholar]
  19. P. Henning, M. Ohlberger and B. Verfürth, A new heterogeneous multiscale method for time-harmonic Maxwell’s equations. SIAM J. Numer. Anal. 54 (2016) 3493–3522. [Google Scholar]
  20. T. Hirono, W. Lui, S. Seki and Y. Yoshikuni, A three-dimensional fourth-order finite-difference time-domain scheme using a symplectic integrator propagator. IEEE Trans. Microwave Theory Tech. 49 (2001) 1640–1648. [Google Scholar]
  21. M. Hochbruck and A. Ostermann, Exponential integrators. Acta Numer. 19 (2010) 209–286. [CrossRef] [MathSciNet] [Google Scholar]
  22. M. Hochbruck and T. Pažur, Implicit Runge–Kutta methods and discontinuous Galerkin discretizations for linear Maxwell’s equations. SIAM J. Numer. Anal. 53 (2015) 485–507. [Google Scholar]
  23. M. Hochbruck and A. Sturm, Error analysis of a second-order locally implicit method for linear Maxwell’s equations. SIAM J. Numer. Anal. 54 (2016) 3167–3191. [Google Scholar]
  24. M. Hochbruck and A. Sturm, Upwind discontinuous Galerkin space discretization and locally implicit time integration for linear Maxwell’s equations. Math. Comput. 88 (2019) 1121–1153. [Google Scholar]
  25. M. Hochbruck, T. Jahnke and R. Schnaubelt, Convergence of an ADI splitting for Maxwell’s equations. Numer. Math. 129 (2015) 535–561. [Google Scholar]
  26. M. Hochbruck, B. Maier and C. Stohrer, Heterogeneous multiscale method for Maxwell’s equations. Multi. Model. Simul. 17 (2019) 1147–1171. [Google Scholar]
  27. J. Hong, L. Ji and L. Kong, Energy-dissipations splitting finite-difference time-domain method for Maxwell equations with perfectly matched layers. J. Comput. Phys. 269 (2014) 201–214. [Google Scholar]
  28. L. Kong, J. Hong and J. Zhang, Splitting multisymplectic integrators for Maxwell’s equations. J. Comput. Phys. 229 (2010) 4259–4278. [Google Scholar]
  29. R. Leis, Initial Boundary Value Problems in Mathematical Physics. Wiley, New York (1986). [Google Scholar]
  30. D. Liang and Q. Yuan, The spatial fourth-order energy-conserved S-FDTD scheme for Maxwell’s equations. J. Comput. Phys. 243 (2013) 344–364. [Google Scholar]
  31. Q. Liu, The PSTD algorithm: a time-domain method requiring only two cells per wavelength. Microw. Opt. Technol. Lett. 15 (1997) 158–165. [Google Scholar]
  32. J.E. Marsden and A. Weinstein, The Hamiltonian structure of the Maxwell–Vlasov equations. Phys. D 4 (1982) 394–406. [Google Scholar]
  33. P. Monk, Finite Element Methods for Maxwell’s Equations. Clarendon Press, Oxford (2003). [Google Scholar]
  34. P. Monk and E. Süli, A convergence analysis of Yee’s scheme on nonuniform grids. SIAM J. Numer. Anal. 31 (1994) 393–412. [Google Scholar]
  35. L. Moya, Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell’s equations. ESAIM Math. Model. Numer. Anal. 46 (2012) 1225–1246. [Google Scholar]
  36. C.D. Munz, P. Ommes, R. Schneider, E. Sonnendrücker and U. Voß, Divergence correction techinques for Maxwell solvers based on a hyperbolic model. J. Comput. Phys. 161 (2000) 484–511. [Google Scholar]
  37. T. Namiki, A new FDTD algorithm based on alternating direction implicit method. IEEE Trans. Micro. Theor. Tech. 47 (1999) 2003–2007. [Google Scholar]
  38. T. Pažur, Error analysis of implicit and exponential time integration of linear Maxwell’s equations, Ph.D. thesis. Karlsruhe Institute of Technology (2013). https://publikationen.bibliothek.kit.edu/1000038617. [Google Scholar]
  39. J. Shang, High-order compact-difference schemes for time-dependent Maxwell equations. J. Comput. Phys. 153 (1999) 312–333. [Google Scholar]
  40. J. Shen, T. Tang and L. Wang, Spectral Methods: Algorithms, Analysis, Applications. Springer, Berlin (2011). [Google Scholar]
  41. T.W.H. Sheu, Y. Chung, J. Li and Y. Wang, Development of an explicit non-staggered scheme for solving three-dimensional Maxwell’s equations. Comput. Phys. Commun. 207 (2016) 258–273. [Google Scholar]
  42. A. Stern, Y. Tong, M. Desbrun and J.E. Marsden, Geometric computational electrodynamics with variational integrators and discrete differential forms, in Geometry, Mechanics, and Dynamics. Springer, New York (2015) 437–475. [Google Scholar]
  43. H. Su, M. Qin and R. Scherer, A multisymplectic geometry and a multi-symplectic scheme for Maxwell’s equations. Int. J. Pure. Appl. Math. 34 (2007) 1–17. [Google Scholar]
  44. Y. Sun and P.S.P. Tse, Symplectic and multi-symplectic numerical methods for Maxwell’s equations. J. Comput. Phys. 230 (2011) 2076–2094. [Google Scholar]
  45. A. Taflove and S.C. Hagness, Computational Electrodynamics. Artech House, Boston (2005). [Google Scholar]
  46. L.N. Trefethen, Spectral Methods in MATLAB. SIAM, Philadelphia (2000). [Google Scholar]
  47. J.G. Verwer, Component splitting for semi-discrete Maxwell equations. BIT 51 (2011) 427–445. [Google Scholar]
  48. B. Wang and X. Zhao, Error estimates of some splitting schemes for charged-particle dynamics under strong magnetic field. SIAM J. Numer. Anal. 59 (2021) 2075–2105. [Google Scholar]
  49. B. Wang and X. Zhao, Geometric two-scale integrators for highly oscillatory system: uniform accuracy and near conservations. SIAM J. Numer. Anal. 61 (2023) 1246–1277. [Google Scholar]
  50. X. Wu and B. Wang, Geometric Integrators for Differential Equations with Highly Oscillatory Dolutions. Springer Nature Singapore Pvt Ltd. (2021). [Google Scholar]
  51. H. Yang, X. Zeng and X. Wu, An approach to solving Maxwell’s equations in time domain. J. Math. Anal. Appl. 518 (2023) 126678. [Google Scholar]
  52. K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14 (1966) 302–307. [Google Scholar]
  53. I. Yousept and J. Zou, Edge element method for optimal control of stationary Maxwell system with Gauss Law. SIAM J. Numer. Anal. 55 (2017) 2787–2810. [Google Scholar]
  54. S. Zhao and G. Wei, High-order FDTD methods via derivative matching for Maxwell’s equations with material interfaces. J. Comput. Phys. 200 (2004) 60–103. [Google Scholar]
  55. F. Zheng, Z. Chen and J. Zhang, Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method. IEEE Trans. Micro. Theor. Tech. 48 (2000) 1550–1558. [Google Scholar]
  56. H. Zhu, S. Song and Y. Chen, Multi-symplectic wavelet collocation method for Maxwell’s equations. Adv. Appl. Math. Mech. 3 (2011) 663–688. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you