Open Access
Issue
ESAIM: M2AN
Volume 58, Number 3, May-June 2024
Page(s) 1107 - 1135
DOI https://doi.org/10.1051/m2an/2024028
Published online 26 June 2024
  1. G. Albi, G. Dimarco and L. Pareschi, Implicit-explicit multistep methods for hyperbolic systems with multiscale relaxation. SIAM J. Sci. Comput. 42 (2020) 2402–2435. [Google Scholar]
  2. U. Ascher, S. Ruuth and R. Spiteri, Implicit-explicit Runge–Kutta methods for time dependent partial differential equations. Appl. Numer. Math. 25 (1997) 151–167. [CrossRef] [MathSciNet] [Google Scholar]
  3. S. Boscarino and G. Russo, Flux-explicit IMEX Runge–Kutta schemes for hyperbolic to parabolic relaxation problems. SIAM J. Numer. Anal. 51 (2013) 163–190. [CrossRef] [MathSciNet] [Google Scholar]
  4. S. Boscarino, L. Pareschi and G. Russo, Implicit-explicit Runge–Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit. SIAM J. Sci. Comput. 35 (2013) A22–A51. [CrossRef] [Google Scholar]
  5. S. Boscarino, L. Pareschi and G. Russo, A unified IMEX Runge–Kutta approach for hyperbolic systems with multiscale relaxation. SIAM J. Numer. Anal. 55 (2017) 2085–2109. [CrossRef] [MathSciNet] [Google Scholar]
  6. M. Carpenter and C. Kennedy, Additive Runge–Kutta schemes for convection-diffusion-reaction equations. Appl. Numer. Math. 44 (2003) 139–181. [CrossRef] [MathSciNet] [Google Scholar]
  7. A. Crestetto, N. Crouseilles, G. Dimarco and M. Lemou, Asymptotically complexity diminishing schemes (ACDS) for kinetic equations in the diffusive scaling. J. Comput. Phys. 394 (2019) 243–262. [CrossRef] [MathSciNet] [Google Scholar]
  8. N. Crouseilles and M. Lemou, An asymptotic preserving scheme based on a micro-macro decomposition for collisional Vlasov equations: diffusion and high-field scaling limits. Kin. Rel. Models 4 (2011) 441–477. [CrossRef] [Google Scholar]
  9. G. Dimarco and L. Pareschi, Exponential Runge–Kutta methods for stiff kinetic equations. SIAM J. Numer. Anal. 49 (2011) 2057–2077. [CrossRef] [MathSciNet] [Google Scholar]
  10. G. Dimarco and L. Pareschi, Asymptotic preserving implicit-explicit Runge–Kutta methods for nonlinear kinetic equations. SIAM J. Numer. Anal. 51 (2013) 1064–1087. [CrossRef] [MathSciNet] [Google Scholar]
  11. G. Dimarco and L. Pareschi, Implicit explicit linear multistep methods for stiff kinetic equations. SIAM J. Numer. Anal. 55 (2017) 664–690. [CrossRef] [MathSciNet] [Google Scholar]
  12. G. Dimarco, L. Pareschi and V. Rispoli, Implicit-explicit Runge–Kutta schemes for the Boltzmann–Poisson system for semiconductors. Commun. Comput. Phys. 15 (2014) 1291–1319. [CrossRef] [MathSciNet] [Google Scholar]
  13. G. Dimarco, L. Pareschi and G. Samaey, Asymptotic preserving Monte Carlo methods for transport equations in the diffusive limit. SIAM J. Sci. Comput. 40 (2018) 504–528. [Google Scholar]
  14. Z. Ding, L. Einkemmer and Q. Li, Dynamical low-rank integrator for the linear Boltzmann equation: error analysis in the diffusion limit. SIAM J. Numer. Anal. 59 (2021) 2254–2285. [CrossRef] [MathSciNet] [Google Scholar]
  15. L. Einkemmer, J. Hu and Y. Wang, An asymptotic-preserving dynamical low-rank method for the multi-scale multi-dimensional linear transport equation. J. Comput. Phys. 439 (2021) 110353. [CrossRef] [Google Scholar]
  16. J. Jang, F. Li, J.-M. Qiu and T. Xiong, Analysis of asymptotic preserving DG-IMEX schemes for linear kinetic transport equations in a diffusive scaling. SIAM J. Numer. Anal. 52 (2014) 2048–2072. [CrossRef] [MathSciNet] [Google Scholar]
  17. J. Jang, F. Li, J.-M. Qiu and T. Xiong, High order asymptotic preserving DG-IMEX schemes for discrete-velocity kinetic equations in a diffusive scaling. J. Comput. Phys. 281 (2015) 199–224. [CrossRef] [MathSciNet] [Google Scholar]
  18. S. Jin, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21 (1999) 441–454. [Google Scholar]
  19. S. Jin, Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review. Riv. Mat. Univ. Parma (2012) 177–216. [Google Scholar]
  20. S. Jin and D. Levermore, The discrete-ordinate method in diffusive regimes. Transp. Theory Stat. Phys. 22 (1993) 739–791. [CrossRef] [Google Scholar]
  21. S. Jin, L. Pareschi and G. Toscani, Diffusive relaxation schemes for multiscale discrete-velocity kinetic equations. SIAM J. Numer. Anal. 35 (1998) 2405–2439. [Google Scholar]
  22. S. Jin, L. Pareschi and G. Toscani, Uniformly accurate diffusive relaxation schemes for multiscale transport equations. SIAM J. Numer. Anal. 38 (2000) 913–936. [Google Scholar]
  23. A. Klar, Asymptotic-induced domain decomposition methods for kinetic and drift diffusion semiconductor equations. SIAM J. Sci. Comput. 19 (1998) 2032–2050. [CrossRef] [MathSciNet] [Google Scholar]
  24. A. Klar, Asymptotic-induced scheme for nonstationary transport equations in the diffusive limit. SIAM J. Numer. Anal. 35 (1998) 1073–1094. [CrossRef] [MathSciNet] [Google Scholar]
  25. A. Klar and C. Schmeiser, Numerical passage from radiative heat transfer to nonlinear diffusion models. Math. Models Methods Appl. Sci. 11 (2001) 749–767. [Google Scholar]
  26. P. Lafitte and G. Samaey, Asymptotic-preserving projective integration schemes for kinetic equations in the diffusion limit. SIAM J. Sci. Comp. 34 (2012) 579–602. [Google Scholar]
  27. E. Larsen and J. Keller, Asymptotic solution of neutron transport problems for small mean free paths. J. Math. Phys. 15 (1974) 75–81. [CrossRef] [Google Scholar]
  28. M. Lemou, Relaxed micro-macro schemes for kinetic equations. C. R. Math. 348 (2010) 455–460. [CrossRef] [Google Scholar]
  29. M. Lemou and F. Méhats, Micro-macro schemes for kinetic equations including boundary layers. SIAM J. Sci. Comput. 34 (2012) B734–B760. [CrossRef] [Google Scholar]
  30. M. Lemou and L. Mieussens, A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit. SIAM J. Sci. Comput. 31 (2008) 334–368. [Google Scholar]
  31. G. Naldi and L. Pareschi, Numerical schemes for kinetic equations in diffusive regimes. Appl. Math. Lett. 11 (1998) 29–35. [CrossRef] [MathSciNet] [Google Scholar]
  32. L. Pareschi and G. Russo, Implicit-explicit Runge–Kutta methods and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25 (2005) 129–155. [MathSciNet] [Google Scholar]
  33. Z. Peng and F. Li, Asymptotic Preserving IMEX-DG-S schemes for linear kinetic transport equations based on Schur complement. SIAM J. Sci. Comput. 43 (2021) A1194–A1220. [CrossRef] [Google Scholar]
  34. Z. Peng, Y. Cheng, J.-M. Qiu and F. Li, Stability-enhanced AP IMEX-LDG schemes for linear kinetic transport equations under a diffusive scaling. J. Comput. Phys. 415 (2020) 109485. [CrossRef] [MathSciNet] [Google Scholar]
  35. Z. Peng, Y. Cheng, J.-M. Qiu and F. Li, Stability-enhanced AP IMEX1-LDG method: energy-based stability and rigorous AP property. SIAM J. Numer. Anal. 59 (2021) 925–954. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you