Open Access
Volume 58, Number 3, May-June 2024
Page(s) 1087 - 1106
Published online 26 June 2024
  1. R. Adams and J. Fournier, Sobolev Spaces. Academic Press (2003). [Google Scholar]
  2. C. Agut and J. Diaz, Stability analysis of the interior penalty discontinuous Galerkin method for the wave equation. ESAIM Math. Model. Numer. Anal. 47 (2013) 903–932. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  3. M. Ainsworth and K. Pinchedez, hp-approximation theory for BDFM and RT finite elements on quadrilaterals. SIAM J. Numer. Anal. 40 (2002) 2047–2068. [Google Scholar]
  4. D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of discontinuous Galerkin, methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 1749–1779. [CrossRef] [Google Scholar]
  5. H. Barucq, T. Chaumont-Frelet and C. Gout, Stability analysis of heterogeneous Helmholtz problems and finite element solution based on propagation media approximation. Math. Comput. 86 (2017) 2129–2157. [Google Scholar]
  6. M. Bernkopf, S. Sauter, C. Torres and A. Veit, Solvability of discrete Helmholtz equations. Preprint: arXiv:2105.02273v2 (2022). [Google Scholar]
  7. A. Bonito and R.H. Nochetto, Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method. SIAM J. Numer. Anal. 48 (2010) 734–771. [Google Scholar]
  8. J. Chand, Z. Wang, A. Modave, J.F. Remacle and T. Warburton, GPU-accelerated discontinuous Galerkin methods on hybrid meshes. J. Comput. Phys. 318 (2016) 142–168. [CrossRef] [MathSciNet] [Google Scholar]
  9. S.N. Chandler-Wilde, E.A. Spence, A. Gibbs and V.P. Smyshlyaev, High-frequency bounds for the Helmholtz equation under parabolic trapping and applications in numerical analysis. SIAM J. Math. Anal. 52 (2020) 845–893. [Google Scholar]
  10. T. Chaumont-Frelet, Mixed finite element discretizations of acoustic Helmholtz problems with high wavenumbers. Calcolo 56 (2019). [CrossRef] [Google Scholar]
  11. T. Chaumont-Frelet and S. Nicaise, Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problems. IMA J. Numer. Anal. 40 (2020) 1503–1543. [CrossRef] [MathSciNet] [Google Scholar]
  12. T. Chaumont-Frelet and E.A. Spence, Scattering by finely-layered obstacles: frequency-explicit bounds and homogenization. SIAM J. Math. Anal. 55 (2023) 1319–1363. [Google Scholar]
  13. T. Chaumont-Frelet and P. Vega, Frequency-explicit approximability estimates for time-harmonic Maxwell’s equations. Calcolo 59 (2022) 22. [CrossRef] [Google Scholar]
  14. T. Chaumont-Frelet, A. Ern and M. Vohralík, On the derivation of guaranteed and p-robust a posteriori error estimates for the Helmholtz equation. Numer. Math. 148 (2021) 525–573. [Google Scholar]
  15. P.G. Ciarlet, The finite element method for elliptic problems. SIAM (2002). [Google Scholar]
  16. G. Cohen, P. Joly, J.E. Roberts and N. Tordjman, High order triangular finite element with mass lumping for the wave equation. SIAM J. Numer. Anal. 38 (2001) 2047–2078. [Google Scholar]
  17. S. Congreve, J. Gedicke and I. Perugia, Robust adaptive hp discontinuous Galerkin finite element methods for the Helmholtz equation. SIAM J. Sci. Comput. 41 (2019) A1121–A1147. [Google Scholar]
  18. M. Costabel, M. Dauge and S. Nicaise, Singularities of Maxwell interface problems. ESAIM Math. Model. Numer. Anal. 33 (1999) 627–649. [CrossRef] [EDP Sciences] [Google Scholar]
  19. D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Springer (2012). [CrossRef] [Google Scholar]
  20. W. Dörfler and S. Sauter, A posteriori error estimation for highly indefinite Helmholtz problems. Comput. Methods Appl. Math. 13 (2013) 333–347. [CrossRef] [MathSciNet] [Google Scholar]
  21. Y. Du and L. Zhu, Preasymptotic error analysis of high order interior penalty discontinuous Galerkin methods for the Helmholtz equation with high wave number. J. Sci. Comput. 67 (2016) 130–152. [CrossRef] [MathSciNet] [Google Scholar]
  22. A. Ern and J.L. Guermond, Finite element quasi-interpolation and best approximation. ESAIM Math. Model. Numer. Anal. 51 (2017) 1367–1385. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  23. A. Ern and M. Vohralík, Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, non-conforming, discontinuous Galerkin, and mixed discretizations. SIAM J. Numer. Anal. 53 (2015) 1058–1081. [Google Scholar]
  24. A. Ern and J.L. Guermond, Finite Elements I: Basic Theory and Practice. Springer Nature (2021). [CrossRef] [Google Scholar]
  25. A. Ern, T. Gudi, I. Smears and M. Vohralík, Equivalence of local- and global-best approximations, a simple stable local commuting projector, and optimal hp approximation estimates in H(div). IMA J. Numer. Anal. 42 (2022) 1023–1049. [CrossRef] [MathSciNet] [Google Scholar]
  26. X. Feng and H. Wu, Discontinuous Galerkin methods for the Helmholtz equation with large wave number. SIAM J. Numer. Anal. 47 (2009) 2872–2896. [Google Scholar]
  27. X. Feng and H. Wu, hp-discontinuous Galerkin methods for the Helmholtz equation with large wave number. Math. Comput. 80 (2011) 1997–2024. [Google Scholar]
  28. P. Fernandes and G. Gilardi, Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Methods Appl. Sci. 47 (1997) 2872–2896. [Google Scholar]
  29. V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer-Verlag (1986). [CrossRef] [Google Scholar]
  30. P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman (1985). [Google Scholar]
  31. M.J. Grote, A. Schneebeli and D. Schötzau, Discontinuous Galerkin finite element method for the wave equation. SIAM J. Numer. Anal. 44 (2006) 2408–2431. [Google Scholar]
  32. R.H.W. Hope and N. Sharma, Convergence analysis of an adaptive interior penalty discontinuous Galerkin method for the Helmholtz equation. IMA J. Numer. Anal. 33 (2013) 898–921. [CrossRef] [MathSciNet] [Google Scholar]
  33. P. Houston, D. Schötzau and T.P. Wihler, Energy norm a posteriori error estimation of hp-adaptive discontinuous Galerkin methods for elliptic problems. Math. Models Methods Appl. Sci. 17 (2006) 33–62. [Google Scholar]
  34. F. Jochmann, An hs-regularity result for the gradient of solutions to elliptic equations with mixed boundary conditions. J. Math. Anal. Appl. 238 (1999) 459–450. [Google Scholar]
  35. D. Lafontaine, E.A. Spence and J. Wunsch, For most frequencies, strong tapping has a weak effect in frequency-domain scattering. Commun. Pure Appl. Math. 74 (2022) 2025–2063. [Google Scholar]
  36. J.M. Melenk and S. Sauter, Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions. Math. Comput. 79 (2010) 1871–1914. [CrossRef] [Google Scholar]
  37. J.M. Melenk, A. Parsania and S. Sauter, General DG-methods for highly indefinite Helmholtz problems. J. Sci. Comput. 57 (2013) 536–581. [CrossRef] [MathSciNet] [Google Scholar]
  38. A. Moiola and E.A Spence, Acoustic transmission problems: wavenumber-explicit bounds and resonance-free regions. Math. Methods Appl. Sci. 29 (2019) 317–354. [CrossRef] [Google Scholar]
  39. P. Monk, Finite Element Methods for Maxwell’s Equations. Oxford Science Publications (2003). [Google Scholar]
  40. S. Sauter and J. Zech, A posteriori error estimation of hp–dg finite element methods for highly indefinite Helmholtz problems. SIAM J. Numer. Anal. 53 (2015) 2414–2440. [Google Scholar]
  41. A.H. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comput. 28 (1974) 959–962. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you