Open Access
Issue |
ESAIM: M2AN
Volume 58, Number 5, September-October 2024
|
|
---|---|---|
Page(s) | 1581 - 1613 | |
DOI | https://doi.org/10.1051/m2an/2024050 | |
Published online | 23 September 2024 |
- B. Adcock, S. Brugiapaglia and C.G. Webster, Sparse Polynomial Approximation of High-Dimensional Functions. Vol. 25. SIAM (2022). [CrossRef] [Google Scholar]
- M.S. Alnæs, A. Logg, K.B. Ølgaard, M.E. Rognes and G.N. Wells, Unified form language. ACM Trans. Math. Softw. 40 (2014) 1–37. [CrossRef] [Google Scholar]
- I. Babuška, F. Nobile and R. Tempone, A stochastic collocation method for delay differential equations with random input. Adv. Appl. Math. Mech. 6 (2014) 403–418. [CrossRef] [MathSciNet] [Google Scholar]
- I. Babuška, R. Tempone and G.E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42 (2004) 800–825. [CrossRef] [MathSciNet] [Google Scholar]
- M. Bachmayr, A. Cohen, R. DeVore and G. Migliorati, Sparse polynomial approximation of parametric elliptic PDEs. Part II: lognormal coefficients. ESAIM: Math. Model. Numer. Anal. 51 (2017) 341–363. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- M. Bachmayr, A. Cohen and G. Migliorati, Sparse polynomial approximation of parametric elliptic PDEs. Part I: affine coefficients. ESAIM: Math. Model. Numer. Anal. 51 (2017) 321–339. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- J. Beck, R. Tempone, F. Nobile and L. Tamellini, On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods. Math. Models Methods Appl. Sci. 22 (2012) 1250023. [CrossRef] [MathSciNet] [Google Scholar]
- J. Beck, F. Nobile, L. Tamellini and R. Tempone, Convergence of quasi-optimal stochastic Galerkin methods for a class of PDEs with random coefficients. Comput. Math. App. 67 (2014) 732–751. [Google Scholar]
- S.B. Brown, S. Abhyankar, M.F. Adams, S. Benson, J. Dener, P. Brune, K. Buschelman, E.M. Constantinescu, L. Dalcin and A. Jolivet, PETSc Web page (2022). [Google Scholar]
- C. Canuto and T. Kozubek, A fictitious domain approach to the numerical solution of PDEs in stochastic domains. Numer. Math. 107 (2007) 257–293. [CrossRef] [MathSciNet] [Google Scholar]
- J.E. Castrillón-Candás and J. Xu, A stochastic collocation approach for parabolic PDEs with random domain deformations. Comput. Math. App. 93 (2021) 32–49. [Google Scholar]
- J.E. Castrillón-Candás, F. Nobile and R.F. Tempone, Analytic regularity and collocation approximation for elliptic PDEs with random domain deformations. Comput. Math. App. 71 (2016) 1173–1197. [Google Scholar]
- K.N. Chaudhury and M. Unser, On the Hilbert transform of wavelets. IEEE Trans. Signal Process. 59 (2011) 1890–1894. [CrossRef] [MathSciNet] [Google Scholar]
- A. Chkifa, A. Cohen and C. Schwab, High-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEs. Found. Comput. Math. 14 (2014) 601–633. [Google Scholar]
- A. Chkifa, A. Cohen and C. Schwab, Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs. J. Math. App. 103 (2015) 400–428. [Google Scholar]
- P.G.A. Cizmas and J.I. Gargoloff, Mesh generation and deformation algorithm for aeroelasticity simulations. J. Aircraft 45 (2008) 1062–1066. [CrossRef] [Google Scholar]
- A. Cohen and R. DeVore, Approximation of high-dimensional parametric PDEs. Acta Numer. 24 (2015) 1–159. [Google Scholar]
- A. Cohen, R. DeVore and C. Schwab, Convergence rates of best N-term Galerkin approximations for a class of elliptic sPDEs. Found. Comput. Math. 10 (2010) 615–646. [Google Scholar]
- A. Cohen, R. Devore and C. Schwab, Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE’S. Anal. App. 9 (2011) 11–47. [CrossRef] [Google Scholar]
- A. Cohen, C. Schwab and J. Zech, Shape holomorphy of the stationary Navier–Stokes equations. SIAM J. Math. Anal. 50 (2018) 1720–1752. [CrossRef] [MathSciNet] [Google Scholar]
- L.D. Dalcin, R.R. Paz, P.A. Kler and A. Cosimo, Parallel distributed computing using Python. Adv. Water Resour. 34 (2011) 1124–1139. [NASA ADS] [CrossRef] [Google Scholar]
- M. Dambrine, I. Greff, H. Harbrecht and B. Puig, Numerical solution of the Poisson equation on domains with a thin layer of random thickness. SIAM J. Numer. Anal. 54 (2016) 921–941. [CrossRef] [MathSciNet] [Google Scholar]
- I. Daubechies, Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics (1992). [CrossRef] [Google Scholar]
- R. Devore, Nonlinear approximation. Acta Numer. 7 (1998) 51–150. [Google Scholar]
- J. Dick, Q.T. Le Gia and C. Schwab, Higher order quasi–Monte Carlo integration for holomorphic, parametric operator equations. SIAM/ASA J. Uncertainty Quantif. 4 (2016) 48–79. [CrossRef] [MathSciNet] [Google Scholar]
- J. Dölz and F. Henríquez, Parametric shape holomorphy of boundary integral operators with applications. Preprint arXiv:2305.19853 (2023). [Google Scholar]
- J. Dölz, H. Harbrecht, C. Jerez-Hanckes and M. Multerer, Isogeometric multilevel quadrature for forward and inverse random acoustic scattering. Comput. Methods Appl. Mech. Eng. 388 (2022) 114242. [CrossRef] [Google Scholar]
- J. Dölz, H. Harbrecht and M. Multerer, Solving acoustic scattering problems by the isogeometric boundary element method. Eng. Comput. (2024). https://doi.org/10.1007/s00366-024-02013-y [Google Scholar]
- D. Dũng, V.K. Nguyen, C. Schwab and J. Zech, Analyticity and Sparsity in Uncertainty Quantification for PDEs with Gaussian Random Field Inputs. Springer Cham (2022). [Google Scholar]
- R.P. Dwight, Robust mesh deformation using the linear elasticity equations, in Computational Fluid Dynamics 2006 – Proceedings of the Fourth International Conference on Computational Fluid Dynamics, ICCFD 2006. Springer Berlin Heidelberg, Berlin, Heidelberg (2009) 401–406. [Google Scholar]
- O.G. Ernst, B. Sprungk and L. Tamellini, Convergence of sparse collocation for functions of countably many Gaussian random variables (with application to elliptic PDEs). SIAM J. Numer. Anal. 56 (2018) 877–905. [CrossRef] [MathSciNet] [Google Scholar]
- O.G. Ernst, B. Sprungk and L. Tamellini, On expansions and nodes for sparse grid collocation of lognormal elliptic PDEs, in Lecture Notes in Computational Science and Engineering. Vol. 144. Springer (2021) 1–31. [Google Scholar]
- C. Geuzaine and J.-F. Remacle, Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79 (2009) 1309–1331. [CrossRef] [Google Scholar]
- A. Girouard, M. Karpukhin, M. Levitin and I. Polterovich, The Dirichlet-to-Neumann map, the boundary Laplacian, and Hörmander’s rediscovered manuscript. J. Spectral Theory 12 (2022) 195–225. [CrossRef] [MathSciNet] [Google Scholar]
- L. Gogoladze, On the absolute convergence of orthogonal series. Georgian Math. J. 29 (2022) 527–532. [CrossRef] [MathSciNet] [Google Scholar]
- S.L. Hahn, Hilbert Transforms in Signal Processing. Artech House (1996). [Google Scholar]
- H. Harbrecht and J. Li, First order second moment analysis for stochastic interface problems based on low-rank approximation. ESAIM: Math. Model. Numer. Anal. 47 (2013) 1533–1552. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- H. Harbrecht, R. Schneider and C. Schwab, Sparse second moment analysis for elliptic problems in stochastic domains. Numer. Math. 109 (2008) 385–414. [CrossRef] [MathSciNet] [Google Scholar]
- H. Harbrecht, M. Peters and M. Siebenmorgen, Analysis of the domain mapping method for elliptic diffusion problems on random domains. Numer. Math. 134 (2016) 823–856. [Google Scholar]
- J. Haubner, M. Siebenborn and M. Ulbrich, A continuous perspective on modeling of shape optimal design problems. SIAM J. Sci. Comput. (2020) 1–20. [Google Scholar]
- J. Haubner, M. Siebenborn and M. Ulbrich, A continuous perspective on shape optimization via domain transfor- mations. SIAM J. Sci. Comput. 43 (2021) A1997–A2018. [CrossRef] [Google Scholar]
- F. Henríquez and C. Schwab, Shape holomorphy of the Calderón projector for the Laplacian in R2. Integral Equ. Oper. Theory 93 (2021) 43. [CrossRef] [Google Scholar]
- R.M. Hicks and P.A. Henne, Wing design by numerical optimization. J. Aircraft 15 (1978) 407–412. [CrossRef] [Google Scholar]
- R. Hiptmair and A. Paganini, Shape optimization by pursuing diffeomorphisms. Comput. Methods Appl. Math. 15 (2015) 291–305. [CrossRef] [MathSciNet] [Google Scholar]
- R. Hiptmair, L. Scarabosio, C. Schillings and C. Schwab, Large deformation shape uncertainty quantification in acoustic scattering. Adv. Comput. Math. 44 (2018) 1475–1518. [Google Scholar]
- V.H. Hoang and C. Schwab, N-term Wiener chaos approximation rates for elliptic PDEs with lognormal Gaussian random inputs. Math. Models Methods Appl. Sci. 24 (2014) 797–826. [CrossRef] [MathSciNet] [Google Scholar]
- R.A. Horn and C.R. Johnson, Topics in Matrix Analysis. Cambridge University Press (1991). [CrossRef] [Google Scholar]
- C. Jerez-Hanckes, C. Schwab and J. Zech, Electromagnetic wave scattering by random surfaces: shape holomorphy. Math. Models Methods Appl. Sci. 27 (2017) 2229–2259. [CrossRef] [MathSciNet] [Google Scholar]
- G. Lee, R. Gommers, F. Waselewski, K. Wohlfahrt and A. O’Leary, PyWavelets: a python package for wavelet analysis. J. Open Source Softw. 4 (2019) 1237. [NASA ADS] [CrossRef] [Google Scholar]
- R. Li, T. Tang and P. Zhang, Moving mesh methods in multiple dimensions based on harmonic maps. J. Comput. Phys. 170 (2001) 562–588. [CrossRef] [MathSciNet] [Google Scholar]
- J.R.R.A. Martins, Aerodynamic design optimization: challenges and perspectives. Comput. Fluids 239 (2022) 105391. [CrossRef] [Google Scholar]
- Y. Meyer, Wavelets and Operators. Cambridge University Press, Cambridge (1992). [Google Scholar]
- M. Motamed, F. Nobile and R. Tempone, A stochastic collocation method for the second order wave equation with a discontinuous random speed. Numer. Math. 123 (2013) 493–536. [CrossRef] [MathSciNet] [Google Scholar]
- M.D. Multerer, A note on the domain mapping method with rough diffusion coefficients. Appl. Numer. Math. 145 (2019) 283–296. [CrossRef] [MathSciNet] [Google Scholar]
- P. Natalini, R. Patrizi and P.E. Ricci, The Dirichlet problem for the Laplace equation in a starlike domain of a Riemann surface. Numer. Algorithms 49 (2008) 299–313. [CrossRef] [MathSciNet] [Google Scholar]
- A. Nouy, F. Schoefs and N. Moës, X-SFEM, a computational technique based on X-FEM to deal with random shapes. Eur. J. Comput. Mech. 16 (2007) 277–293. [CrossRef] [Google Scholar]
- A. Nouy, A. Clément, F. Schoefs and N. Moës, An extended stochastic finite element method for solving stochastic partial differential equations on random domains. Comput. Methods Appl. Mech. Eng. 197 (2008) 4663–4682. [Google Scholar]
- S. Onyshkevych and M. Siebenborn, Mesh quality preserving shape optimization using nonlinear extension operators. J. Optim. Theory App. 189 (2021) 291–316. [CrossRef] [Google Scholar]
- J.A.A. Opschoor, C. Schwab and J. Zech, Exponential ReLU DNN expression of holomorphic maps in high dimension. Const. Approx. 55 (2022) 537–582. [CrossRef] [Google Scholar]
- S. Osher and R.P. Fedkiw, Level set methods: an overview and some recent results. J. Comput. Phys. 169 (2001) 463–502. [CrossRef] [MathSciNet] [Google Scholar]
- B. Peherstorfer, K. Willcox and M. Gunzburger, Survey of multifidelity methods in uncertainty propagation, infer- ence, and optimization. SIAM Rev. 60 (2018) 550–591. [CrossRef] [MathSciNet] [Google Scholar]
- J. Pinto, F. Henríquez and C. Jerez-Hanckes, Shape holomorphy of boundary integral operators on multiple open arcs. J. Fourier Anal. App. 30 (2024) 14 [Google Scholar]
- G. Rozza, D.B. Phuong Huynh and A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: application to transport and continuum mechanics. Arch. Comput. Methods Eng. 15 (2008) 229–275. [CrossRef] [MathSciNet] [Google Scholar]
- L. Scarabosio, Multilevel Monte Carlo on a high-dimensional parameter space for transmission problems with geo- metric uncertainties. Int. J. Uncertainty Quantif. 9 (2017) 515–541. [Google Scholar]
- L. Scarabosio, Deep neural network surrogates for nonsmooth quantities of interest in shape uncertainty quantification. SIAM-ASA J. Uncertainty Quantif. 10 (2022) 975–1011. [CrossRef] [MathSciNet] [Google Scholar]
- C. Schillings and C. Schwab, Sparse, adaptive Smolyak quadratures for Bayesian inverse problems. Inverse Prob. 29 (2013) 065011. [CrossRef] [Google Scholar]
- C. Schwab and J. Zech, Deep learning in high dimension: neural network expression rates for generalized polynomial Chaos expansions in UQ. Anal. App. 17 (2019) 19–55. [CrossRef] [Google Scholar]
- M.W. Scroggs, I.A. Baratta, C.N. Richardson and G.N. Wells, Basix: a runtime finite element basis evaluation library. J. Open Source Softw. 7 (2022) 3982. [CrossRef] [Google Scholar]
- M.W. Scroggs, J.S. Dokken, C.N. Richardson and G.N. Wells, Construction of arbitrary order finite element degree- of-freedom maps on polygonal and polyhedral cell meshes. ACM Trans. Math. Softw. 48 (2022) 1–23. [CrossRef] [Google Scholar]
- J. Serrin, Weakly subharmonic function. Bollettino dell’Unione Matematica Italiana 4 (1999) 347–361. [Google Scholar]
- D.M. Tartakovsky and D. Xiu, Stochastic analysis of transport in tubes with rough walls. J. Comput. Phys. 217 (2006) 248–259. [Google Scholar]
- R.A. Todor and C. Schwab, Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients. IMA J. Numer. Anal. 27 (2007) 232–261. [CrossRef] [MathSciNet] [Google Scholar]
- D. Xiu and J.S. Hesthaven, High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27 (2005) 1118–1139. [Google Scholar]
- D. Xiu and D.M. Tartakovsky, Numerical methods for differential equations in random domains. SIAM J. Sci. Comput. 28 (2006) 1167–1185. [Google Scholar]
- J. Zech, Sparse-grid approximation of high-dimensional parametric PDEs. Ph.D. Thesis, ETH Zürich (2018). [Google Scholar]
- J. Zech and C. Schwab, Convergence rates of high dimensional Smolyak quadrature. ESAIM: Math. Model. Numer. Anal. 54 (2020) 1259–1307. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.