Open Access
Issue
ESAIM: M2AN
Volume 58, Number 5, September-October 2024
Page(s) 1615 - 1649
DOI https://doi.org/10.1051/m2an/2024029
Published online 23 September 2024
  1. R.M. Alford, K.R. Kelly and D.M. Boore, Accuracy of finite difference modelling of the acoustic wave equation. Geophysics 39 (1974) 834–842. [CrossRef] [Google Scholar]
  2. H. Bao, J. Bielak, O. Ghattas, L.F. Kallivokas, D.R. O’Hallaron, J.R. Shewchuk and J. Xu, Large-scale simulation of elastic wave propagation in heterogeneous media on parallel computers. Comput. Methods Appl. Mech. Eng. 152 (1998) 85–102. [CrossRef] [Google Scholar]
  3. L. Chai, P. Tong and X. Yang, Frozen Gaussian approximation for 3-D seismic wave propagation. Geophys. J. Int. 208 (2017) 59–74. [CrossRef] [Google Scholar]
  4. L. Chai, P. Tong and X. Yang, Frozen Gaussian approximation for 3-D seismic tomography. Inverse Prob. 34 (2018) 055004. [CrossRef] [Google Scholar]
  5. L. Chai, E. Lorin and X. Yang, Frozen Gaussian approximation for the Dirac equation in semi-classical regime. SIAM J. Num. Anal. 57 (2019) 2383–2412. [CrossRef] [Google Scholar]
  6. L. Chai, J.C. Hateley, E. Lorin and X. Yang, On the convergence of frozen Gaussian approximation for linear non-strictly hyperbolic systems. Comm. Math. Sci. 19 (2021) 585–606. [CrossRef] [Google Scholar]
  7. B. Engquist and O. Runborg, Computational high frequency wave propagation. Acta Numer. 12 (2003) 181–266. [CrossRef] [MathSciNet] [Google Scholar]
  8. L.C. Evans, Partial Differential Equations. Graduate Studies in Mathematics. American Mathematical Society (1998). [Google Scholar]
  9. J.C. Hateley, L. Chai, P. Tong and X. Yang, Frozen Gaussian approximation for 3-D elastic wave equation and seismic tomography. Geophys. J. Int. 216 (2019) 1394–1412. [CrossRef] [Google Scholar]
  10. E.J. Heller, Frozen Gaussians: a very simple semiclassical approximation. J. Chem. Phys. 75 (1981) 2923–2931. [CrossRef] [MathSciNet] [Google Scholar]
  11. M.F. Herman and E. Kluk, A semiclassical justification for the use of non-spreading wavepackets in dynamics calculations. Chem. Phys. 91 (1984) 27–34. [CrossRef] [Google Scholar]
  12. Y. Hu, L. Chai, Z. Huang and X. Yang, Seismic tomography with random batch gradient reconstruction. SIAM J. Sci. Comput. 45 (2023) B314–B336. [CrossRef] [Google Scholar]
  13. Z. Huang, L. Xu and Z. Zhou, Efficient frozen Gaussian sampling algorithms for nonadiabatic quantum dynamics at metal surfaces. J. Comput. Phys. 474 (2023) 111771. [CrossRef] [Google Scholar]
  14. K. Kay, Integral expressions for the semi-classical time-dependent propagator. J. Chem. Phys. 100 (1994) 4377–4392. [CrossRef] [Google Scholar]
  15. K. Kay, The Herman–Kluk approximation: derivation and semiclassical corrections. Chem. Phys. 322 (2006) 3–12. [CrossRef] [Google Scholar]
  16. E. Kluk, M. Herman and H. Davis, Comparison of the propagation of semiclassical frozen Gaussian wave functions with quantum propagation for a highly excited anharmonic oscillator. J. Chem. Phys. 84 (1986) 326–334. [CrossRef] [Google Scholar]
  17. D. Kolsloff and E. Baysal, Forward modelling by a Fourier method. Geophysics 56 (1982) 231–241. [Google Scholar]
  18. D. Komatitsch and J. Tromp, Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophys. J. Int. 139 (1999) 806–822. [CrossRef] [Google Scholar]
  19. C. Lasser and D. Sattlegger, Discretising the Herman–Kluk propagator. Numer. Math. 137 (2017) 119–157. [CrossRef] [MathSciNet] [Google Scholar]
  20. J. Lu and X. Yang, Frozen Gaussian approximation for high frequency wave propagation. Commun. Math. Sci. 9 (2011) 663–683. [CrossRef] [MathSciNet] [Google Scholar]
  21. J. Lu and X. Yang, Convergence of frozen Gaussian approximation for high frequency wave propagation. Comm. Pure Appl. Math. 65 (2012) 759–789. [CrossRef] [MathSciNet] [Google Scholar]
  22. J. Lu and X. Yang, Frozen Gaussian approximation for general linear strictly hyperbolic systems: formulation and Eulerian methods. Multiscale Model. Simul. 10 (2012) 451–472. [CrossRef] [MathSciNet] [Google Scholar]
  23. J. Lu and Z. Zhou, Improved sampling and validation of frozen Gaussian approximation with surface hopping algorithm for nonadiabatic dynamics. J Chem Phys. 145 (2016) 124109. [CrossRef] [PubMed] [Google Scholar]
  24. J. Lu and Z. Zhou, Frozen Gaussian approximation with surface hopping for mixed quantum-classical dynamics: a mathematical justification of fewest switches surface hopping algorithms. Math. Comput. 87 (2018) 2189–2232. [Google Scholar]
  25. G.R. Richter, An explicit finite element method for the wave equation. Appl. Numer. Math. 16 (1994) 65–80. [CrossRef] [MathSciNet] [Google Scholar]
  26. O. Runborg, Mathematical models and numerical methods for high frequency waves. Commun. Comput. Phys. 2 (2007) 827–880. [MathSciNet] [Google Scholar]
  27. J. Shen, T. Tang and L.-L. Wang, Higher-Order Differential Equations. Springer Berlin Heidelberg, Berlin, Heidelberg (2011) 201–236. [Google Scholar]
  28. T. Swart and V. Rousse, A mathematical justification of the Herman–Kluk propagator. Commun. Math. Phys. 286 (2009) 725–750. [CrossRef] [Google Scholar]
  29. Y. Xie and Z. Zhou, Frozen Gaussian sampling: a mesh-free Monte Carlo method for approximating semiclassical Schrödinger equations. Preprint arXiv:2112.05405 (2021). [Google Scholar]
  30. X. Yang, J. Lu and S. Fomel, Seismic modeling using the frozen Gaussian approximation, in SEG Technical Program Expanded Abstracts 2013. Society of Exploration Geophysicists (2013) 4677–4682. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you