Open Access
Issue
ESAIM: M2AN
Volume 58, Number 5, September-October 2024
Page(s) 1853 - 1879
DOI https://doi.org/10.1051/m2an/2024046
Published online 10 October 2024
  1. D. An, D. Fang and L. Lin, Time-dependent unbounded Hamiltonian simulation with vector norm scaling. Quantum 5 (2021) 459. [CrossRef] [Google Scholar]
  2. D. An, D. Fang and L. Lin, Time-dependent Hamiltonian simulation of highly oscillatory dynamics and superconvergence for Schrödinger equation. Quantum 6 (2022) 690. [CrossRef] [Google Scholar]
  3. D. An, J. Liu and L. Lin, Linear combination of hamiltonian simulation for non-unitary dynamics with optimal state preparation cost. Phys. Rev. Lett. 131 (2023) 150603. [CrossRef] [PubMed] [Google Scholar]
  4. F. Assous, P. Ciarlet and S. Labrunie, Mathematical Foundations of Computational Electromagnetism. Springer International Publishing AG (2018). [Google Scholar]
  5. D.W. Berry, A.M. Childs, R. Cleve, R. Kothari and R.D. Somma, Exponential improvement in precision for simulating sparse Hamiltonians, in Proceedings of the 46th Annual ACM Symposium on Theory of Computing, STOC (2014) 283–292. [Google Scholar]
  6. D.W. Berry, A.M. Childs, R. Cleve, R. Kothari and R.D. Somma, Simulating Hamiltonian dynamics with a truncated Taylor series. Phys. Rev. Lett. 114 (2015) 090502. [CrossRef] [PubMed] [Google Scholar]
  7. D.W. Berry, A.M. Childs and R. Kothari, Hamiltonian simulation with nearly optimal dependence on all parameters, in IEEE 56th Annual Symposium on Foundations of Computer Science (2015). [Google Scholar]
  8. D.W. Berry, A.M. Childs, Y. Su, X. Wang and N. Wiebe, Time-dependent Hamiltonian simulation with l1-norm scaling. Quantum 4 (2020) 254. [CrossRef] [Google Scholar]
  9. N. Bui, A. Reineix and C. Guiffaut, Alternative quantum circuit implementation for 2d electromagnetic wave simulation with quasi-pec modeling, in IEEE MTT-S International Conference on Electromagnetic and Multiphysics Modeling and Optimization (2022). [Google Scholar]
  10. W. Cai, Computational Methods for Electromagnetic Phenomena: Electrostatics in Solvation, Scattering, and Electron Transport. Cambridge University Press (2013). [Google Scholar]
  11. W. Cai and S. Deng, An upwinding embedded boundary method for Maxwell’s equations in media with material interfaces: 2D case. J. Comput. Phys. 190 (2003) 159–183. [CrossRef] [MathSciNet] [Google Scholar]
  12. L. Cai, F.X. Meng and X.T. Yu, Quantum algorithm for method of moment in electromagnetic computation, in IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT) (2021) 1–3. [Google Scholar]
  13. B.D. Clader, B.C. Jacobs and C.R. Sprouse, Preconditioned quantum linear system algorithm. Phys. Rev. Lett. 110 (2013) 250504. [CrossRef] [PubMed] [Google Scholar]
  14. P.C. Costa, S. Jordan and A. Ostrander, Quantum algorithm for simulating the wave equation. Phys. Rev. A 99 (2019) 012323. [CrossRef] [Google Scholar]
  15. D. Deutsch, Quantum theory, the church-turing principle and the universal quantum number. Proc. R. Soc. Lon. A 400 (1985) 97–117. [CrossRef] [Google Scholar]
  16. D. DiVincenzo, Quantum computation. Science 270 (1995) 255–261. [CrossRef] [MathSciNet] [Google Scholar]
  17. A. Ekert, R. Jozsa and P. Marcer, Quantum algorithms: entanglement-enhanced information processing. Philos. Trans. R. Soc. A 356 (1998) 1769–1782. [CrossRef] [MathSciNet] [Google Scholar]
  18. D. Fang, L. Lin and Y. Tong, Time-marching based quantum solvers for time-dependent linear differential equations. Quantum 7 (2023) 955. [CrossRef] [Google Scholar]
  19. R. Feynman, Simulating physics with computers. Int. J. Theor. Phys. 21 (1982) 467–488. [CrossRef] [Google Scholar]
  20. M. Freiser and P. Marcus, A survey of some physical limitations on computer elements. IEEE Trans. Magn. 5 (1969) 82–90. [CrossRef] [Google Scholar]
  21. G.H. Golub and C.F.V. Loan, Matrix Computations. Johns Hopkins University Press (1996). [Google Scholar]
  22. J.Y. Huang, R.Y. Su, W. Han Lim, M. Feng, B. van Straaten, B. Severin, W. Gilbert, N. Dumoulin Stuyck, T. Tanttu, S. Serrano, J.D. Cifuentes, I. Hansen, A.E. Seedhouse, E. Vahapoglu, R.C.C. Leon, N.V. Abrosimov, H. Pohl, M.L.W. Thewalt, F.E. Hudson, C.C. Escott, N. Ares, S.D. Bartlett, A. Morello, A. Saraiva, A. Laucht, A.S. Dzurak and C.H. Yang, High-fidelity spin qubit operation and algorithmic initialization above 1 K. Nature 627 (2024) 8005. [Google Scholar]
  23. S. Jin and N. Liu, Analog quantum simulation of partial differential equations. Preprint arXiv:2308.00646 (2023). [Google Scholar]
  24. S. Jin, N. Liu and Y. Yu, Quantum simulation of partial differential equations via schrodingerisation: technical details. Preprint arXiv:2212.14703 (2022). [Google Scholar]
  25. S. Jin, N. Liu, X Li and Y. Yu, Quantum simulation for quantum dynamics with artificial boundary conditions. Preprint arXiv:2304.00667 (2023). [Google Scholar]
  26. S. Jin, N. Liu and Y. Yu, Quantum simulation of partial differential equations via schrodingerisation. Phys. Rev. A 108 (2023) 032603. [CrossRef] [Google Scholar]
  27. S. Jin, X. Li, N. Liu and Y. Yu, Quantum simulation for partial differential equations with physical boundary or interface conditions. J. Comput. Phys. 498 (2024) 112707. [CrossRef] [Google Scholar]
  28. S. Jin, N. Liu and C. Ma, On Schrödingerization based quantum algorithms for linear dynamical systems with inhomogeneous terms. Preprint arXiv:2402.14696v2 (2024). [Google Scholar]
  29. S. Jin, N. Liu and C. Ma, Schrödingerization based computationally stable algorithms for ill-posed problems in partial differential equations. Preprint arXiv:2403.19123v3 (2024). [Google Scholar]
  30. A.S. Khan, An exact matrix representation of Maxwell’s equations. Phys. Scripta 71 (2005) 440. [CrossRef] [MathSciNet] [Google Scholar]
  31. S.A. Khan and R. Jagannathan, A new matrix representation of the Maxwell equations based on the Riemann–Silberstein-weber vector for a linear inhomogeneous medium. Preprint arXiv:2205.09907 (2022). [Google Scholar]
  32. A.Y. Kitaev, A. Shen and M.N. Vyalyi, Classical and Quantum Computation. American Mathematical Society (2002). [Google Scholar]
  33. S. Lloyd, M. Mohseni and P. Rebentrost, Quantum principal component analysis. Nature 10 (2014) 631. [Google Scholar]
  34. P. Lorrain and F. Lorrain, Electromagnetics Fields and Waves. W.H. Freeman and Company, New York (1988). [Google Scholar]
  35. G.H. Low and I.L. Chuang, Optimal Hamiltonian simulation by quantum signal processing. Phys. Rev. Lett. 118 (2017) 010501. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  36. G.H. Low and I.L. Chuang, Hamiltonian simulation by qubitization. Quantum 3 (2019) 163. [CrossRef] [Google Scholar]
  37. J.M. Martyn, Z.M. Rossi, A.K. Tan and I.L. Chuang, Grand unification of quantum algorithms. PRX Quantum 2 (2021) 040203. [CrossRef] [Google Scholar]
  38. M. Nagy and S.G. Akl, Quantum computing: beyond the limits of conventional computation. Int. J. Parallel Emergent Distrib. Syst. 22 (2002) 123–135. [Google Scholar]
  39. M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information. Cambridge University Press (2000). [Google Scholar]
  40. C. Seife, What are the limits of conventional computing? Science 309 (2005) 5731. [Google Scholar]
  41. P.W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in Proceedings of 35th Annual Symposium on Foundations of Computer Science. IEEE (1994) 124–134. [Google Scholar]
  42. A. Steane, Quantum computing. Rep. Progr. Phys. 61 (1998) 117–173. [CrossRef] [MathSciNet] [Google Scholar]
  43. A. Suau, G. Staffelbach and H. Calandra, Practical quantum computing: solving the wave equation using a quantum approach. ACM Trans. Quantum Comput. 2 (2021) 1–35. [CrossRef] [MathSciNet] [Google Scholar]
  44. A. Taflove, S.C. Hagness and M. Piket-May, Computational electromagnetics: the finite-difference time-domain method. Electr. Eng. Handb. 3 (2005) 629–670. [CrossRef] [Google Scholar]
  45. G. Vahala, L. Vahala, M. Soe and A.K. Ram, The effect of the Pauli spin matrices on the quantum lattice algorithm for Maxwell equations in inhomogeneous media. DOI: 10.48550/arXiv.2010.12264 (2020). [Google Scholar]
  46. G. Vahala, L. Vahala, M. Soe and A.K. Ram, Unitary quantum lattice simulations for maxwell equations in vacuum and in dielectric media. J. Plasma Phys. 86 (2020) 905860518. [CrossRef] [Google Scholar]
  47. G. Vahala, L. Vahala, M. Soe and A.K. Ram, One- and two-dimensional quantum lattice algorithms for Maxwell equations in inhomogeneous scalar dielectric media I: theory. Radiat. Eff. Defect. Solids 176 (2021) 49–63. [CrossRef] [Google Scholar]
  48. G. Vahala, L. Vahala, M. Soe and A.K. Ram, One- and two-dimensional quantum lattice algorithms for Maxwell equations in inhomogeneous scalar dielectric media II: simulations. Radiat. Eff. Defect. Solids 176 (2021) 64–72. [CrossRef] [Google Scholar]
  49. J. Yepez, An efficient and accurate quantum algorithm for the dirac equation. Preprint arXiv:quant-ph/0210093 (2002). [Google Scholar]
  50. J. Zhang, F. Feng and Q.J. Zhang, Quantum method for finite element simulation of electromagnetic problems, in IEEE MTT-S International Microwave Symposium (IMS) (2021) 120–123. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you