Open Access
Issue |
ESAIM: M2AN
Volume 58, Number 5, September-October 2024
|
|
---|---|---|
Page(s) | 1881 - 1905 | |
DOI | https://doi.org/10.1051/m2an/2024049 | |
Published online | 10 October 2024 |
- A. Askenfelt and E.V. Jansson, From touch to string vibrations. III: string motion and spectra. J. Acoust. Soc. Am. 93 (1993) 2181–2196. [CrossRef] [Google Scholar]
- S. Bilbao, A. Torin and V. Chatziioannou, Numerical modeling of collisions in musical instruments. Acta Acust. United Acust. 101 (2015) 155–173. [CrossRef] [Google Scholar]
- J. Cai and J. Shen, Two classes of linearly implicit local energy-preserving approach for general multi-symplectic Hamiltonian PDEs. J. Comput. Phys. 401 (2020) 108975. [Google Scholar]
- G. Castera, Modélisation, analyse numérique et simulation de la propagation des ondes longitudinales dans le piano. Application à l’étude du toucher instrumental. Ph.D. thesis, Université de Pau et des Pays de l’Adour (2023). [Google Scholar]
- G. Castera and J. Chabassier, Numerical analysis of quadratized schemes. Application to the simulation of the nonlinear piano string. Technical Report RR-9516, Inria Bordeaux – Sud-Ouest (2023). [Google Scholar]
- G. Castera and J. Chabassier, Pianolib, C++ toolbox for piano simulation (2024). https://gitlab.inria.fr/pianotouch/pianolib, ⟨hal-04571401⟩. [Google Scholar]
- J. Chabassier, Modélisation et simulation numérique d’un piano par modèles physiques. Ph.D. thesis, École polytechnique (2012). [Google Scholar]
- J. Chabassier and M. Duruflé, Physical parameters for piano modeling. Technical report (2012). [Google Scholar]
- J. Chabassier and M. Duruflé, Energy based simulation of a Timoshenko beam in non-forced rotation. Influence of the piano hammer shank flexibility on the sound. J. Sound Vib. 333 (2014) 7198–7215. [CrossRef] [Google Scholar]
- J. Chabassier and S. Imperiale, Space/time convergence analysis of a class of conservative schemes for linear wave equations. C. R. Math. 355 (2017) 282–289. [CrossRef] [MathSciNet] [Google Scholar]
- J. Chabassier and P. Joly, Energy preserving schemes for nonlinear Hamiltonian systems of wave equations: application to the vibrating piano string. Comput. Methods Appl. Mech. Eng. 199 (2010) 2779–2795. [CrossRef] [Google Scholar]
- V. Chatziioannou and M. Van Walstijn, Energy conserving schemes for the simulation of musical instrument contact dynamics. J. Sound Vib. 339 (2015) 262–279. [CrossRef] [Google Scholar]
- M. Ducceschi and S. Bilbao, Non-iterative, conservative schemes for geometrically exact nonlinear string vibration, in Proceedings of the 23rd International Congress on Acoustics. Deutsche Gesellschaft für Akustik (2019). [Google Scholar]
- M. Ducceschi and S. Bilbao, Simulation of the geometrically exact nonlinear string via energy quadratisation. J. Sound Vib. 534 (2022) 117021. [CrossRef] [Google Scholar]
- M. Ducceschi, S. Bilbao and C.J. Webb, Real-time simulation of the struck piano string with geometrically exact nonlinearity via a scalar quadratic energy method, in Proceedings of the 10th European Nonlinear Dynamics Conference (2022). [Google Scholar]
- O. Gonzalez, Exact energy and momentum conserving algorithms for general models in nonlinear elasticity. Comput. Methods Appl. Mech. Eng. 190 (2000) 1763–1783. [CrossRef] [Google Scholar]
- M. He and P. Sun, Energy-preserving finite element methods for a class of nonlinear wave equations. Appl. Numer. Math. 157 (2020) 446–469. [CrossRef] [MathSciNet] [Google Scholar]
- A. Izabdakhsh, J. McPhee and S. Birkett, Dynamic modeling and experimental testing of a piano action mechanism with a flexible hammer shank. J. Comput. Nonlinear Dyn. 3 (2008) 031004. [CrossRef] [Google Scholar]
- C. Jiang, W. Cai and Y. Wang, A linearly implicit and local energy-preserving scheme for the sine-Gordon equation based on the invariant energy quadratization approach. J. Sci. Comput. 80 (2019) 1629–1655. [CrossRef] [MathSciNet] [Google Scholar]
- C. Jiang, Y. Wang and Y. Gong, Explicit high-order energy-preserving methods for general Hamiltonian partial differential equations. J. Comput. Appl. Math. 388 (2021) 113298. [CrossRef] [Google Scholar]
- P. Joly, Variational methods for time-dependent wave propagation problems, in Topics in Computational Wave Propagation: Direct and Inverse Problems. Springer Berlin Heidelberg, Berlin, Heidelberg (2003) 201–264. [Google Scholar]
- D. Li and W. Sun, Linearly implicit and high-order energy-conserving schemes for nonlinear wave equations. J. Sci. Comput. 83 (2020) 1–17. [CrossRef] [Google Scholar]
- L. Lin, Z. Yang and S. Dong, Numerical approximation of incompressible Navier-Stokes equations based on an auxiliary energy variable. J. Comput. Phys. 388 (2019) 1–22. [CrossRef] [MathSciNet] [Google Scholar]
- S. Lin, W. Shu and W. Yongxin, The well-posedness and regularity of a rotating blades equation. Electron. Res. Arch. 28 (2020) 691–719. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Liu and X. Li, The exponential scalar auxiliary variable (E-SAV) approach for phase field models and its explicit computing. SIAM J. Sci. Comput. 42 (2020) B630–B655. [CrossRef] [Google Scholar]
- Z. Liu and X. Li, Step-by-step solving schemes based on scalar auxiliary variable and invariant energy quadratization approaches for gradient flows, in Numerical Algorithms. Springer (2022) 1–22. [Google Scholar]
- M.A. Rincon and N.P. Quintino, Numerical analysis and simulation for a nonlinear wave equation. J. Comput. Appl. Math. 296 (2016) 247–264. [CrossRef] [MathSciNet] [Google Scholar]
- J. Shen and X. Yang, Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete Contin. Dyn. Syst. 28 (2010) 1669–1691. [CrossRef] [MathSciNet] [Google Scholar]
- J. Shen, J. Xu and J. Yang, A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61 (2019) 474–506. [CrossRef] [MathSciNet] [Google Scholar]
- J. Sherman and W.J. Morrison, Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Ann. Math. Statist. 21 (1950) 124–127. [CrossRef] [Google Scholar]
- A. Stulov, Experimental and theoretical studies of piano hammer, in Proceedings of the Stockholm Music Acoustics Conference. Stockholm, Sweden Vol. 485 (2003). [Google Scholar]
- S. Timmermans, Haptic key based on a real-time multibody model of a piano action. Ph.D. thesis, Université catholique de Louvain (2021). [Google Scholar]
- C.P. Vyasarayani, S. Birkett and J. McPhee, Modeling the dynamics of a compliant piano action mechanism impacting an elastic stiff string. J. Acoust. Soc. Am. 125 (2009) 4034–4042. [CrossRef] [PubMed] [Google Scholar]
- M.A. Woodbury, Inverting Modified Matrices. Statistical Research Group (1950). [Google Scholar]
- X. Yang, Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327 (2016) 294–316. [CrossRef] [MathSciNet] [Google Scholar]
- J. Zhao, Q. Wang and X. Yang, Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach. Int. J. Numer. Methods Eng. 110 (2017) 279–300. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.