Open Access
Issue |
ESAIM: M2AN
Volume 58, Number 6, November-December 2024
Special issue - To commemorate Assyr Abdulle
|
|
---|---|---|
Page(s) | 2119 - 2133 | |
DOI | https://doi.org/10.1051/m2an/2023094 | |
Published online | 04 December 2024 |
- A. Arrarás, K.J. in ’t Hout, W. Hundsdorfer and L. Portero, Modified Douglas splitting methods for reaction-diffusion equations. BIT Numer. Math. 57 (2017) 261–285. [CrossRef] [Google Scholar]
- J. Douglas, Jr., On the numerical integration of ∂2u/∂x2 + ∂2u/∂y2 = ∂u/∂t by implicit methods. J. Soc. Ind. Appl. Math. 3 (1955) 42–65. [CrossRef] [Google Scholar]
- J. Douglas, Jr. and H.H. Rachford, Jr., On the numerical solution of heat conduction problems in two and three space variables. Trans. Amer. Math. Soc. 82 (1956) 421–439. [CrossRef] [MathSciNet] [Google Scholar]
- S. González-Pinto, D. Hernández-Abreu, S. Pérez-Rodríguez and R. Weiner, A family of three-stage third order AMF-W-methods for the time integration of advection diffusion reaction PDEs. Appl. Math. Comput. 274 (2016) 565–584. [MathSciNet] [Google Scholar]
- S. González-Pinto, D. Hernández-Abreu and S. Pérez-Rodríguez, W-methods to stabilize standard explicit Runge-Kutta methods in the time integration of advection-diffusion-reaction PDEs. J. Comput. Appl. Math. 316 (2017) 143–160. [CrossRef] [MathSciNet] [Google Scholar]
- S. González-Pinto, E. Hairer and D. Hernández-Abreu, Convergence in ℓ2 and in ℓ∞ norm of one-stage AMF-W-methods for parabolic problems. SIAM J. Numer. Anal. 58 (2020) 1117–1137. [CrossRef] [MathSciNet] [Google Scholar]
- S. González-Pinto, E. Hairer and D. Hernández-Abreu, High order PDE-convergence of AMF-W methods for 2D-linear parabolic problems. J. Comput. Appl. Math. 417 (2023) 114642. [CrossRef] [Google Scholar]
- E. Hairer and G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, 2nd edition. Springer Series in Computational Mathematics 14. Springer-Verlag, Berlin (1996). [Google Scholar]
- W. Hundsdorfer and J.G. Verwer, Stability and convergence of the Peaceman-Rachford ADI method for initial-boundary value problems. Math. Comput. 53 (1989) 81–101. [CrossRef] [Google Scholar]
- W. Hundsdorfer and J.G. Verwer, Numerical solution of time-dependent advection-diffusion-reaction equations. In Vol. 33 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (2003). [CrossRef] [Google Scholar]
- K.J. in ’t Hout and M. Wyns, Convergence of the modified Craig-Sneyd scheme for two-dimensional convection-diffusion equations with mixed derivative term. J. Comput. Appl. Math. 296 (2016) 170–180. [CrossRef] [MathSciNet] [Google Scholar]
- J. Rang and L. Angermann, New Rosenbrock W-methods of order 3 for partial differential algebraic equations of index 1. BIT Numer. Math. 45 (2005) 761–787. [CrossRef] [Google Scholar]
- P.J. van der Houwen and B.P. Sommeijer, Approximate factorization for time-dependent partial differential equations. J. Comput. Appl. Math. 128 (2001) 447–466. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.