Open Access
Issue
ESAIM: M2AN
Volume 58, Number 6, November-December 2024
Special issue - To commemorate Assyr Abdulle
Page(s) 2135 - 2154
DOI https://doi.org/10.1051/m2an/2023095
Published online 04 December 2024
  1. I. Babuška, F. Nobile and R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45 (2007) 1005–1034. [CrossRef] [MathSciNet] [Google Scholar]
  2. R.F. Betzel and D.S. Bassett, Generative models for network neuroscience: Prospects and promise. J. R. Soc. Interface 14 (2017) 20170623. [CrossRef] [PubMed] [Google Scholar]
  3. G.S. Bloom, Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 71 (2014) 505–508. [CrossRef] [PubMed] [Google Scholar]
  4. T. Bohr, P.G. Hjorth, S.C. Holst, S. Hrabtov, V. Kiviniemi, T. Lilius, I. Lundgaard, K.-A. Mardal, E.A. Martens, Y. Mori, U.V. Ngerl, C. Nicholson, A. Tannenbaum, J.H. Thomas, J. Tithof, H. Benveniste, J.J. Iliff, D.H. Kelley and M. Nedergaard, The glymphatic system: Current understanding and modeling. iScience 25 (2022) 104987. [CrossRef] [PubMed] [Google Scholar]
  5. F. Bonizzoni, M. Braukhoff, A. Jngel and I. Perugia, A structure-preserving discontinuous Galerkin scheme for the Fisher–KPP equation. Numer. Math. 146 (2020) 119–157. [CrossRef] [MathSciNet] [Google Scholar]
  6. M. Corti, F. Bonizzoni, L. Dede’, A.M. Quarteroni and P.F. Antonietti, Discontinuous Galerkin methods for Fisher-Kolmogorov equation with application to α-synuclein spreading in Parkinson’s disease. Comput. Methods Appl. Mech. Eng. 417 (2023) 116450. [CrossRef] [Google Scholar]
  7. DSI-Studio, A Tractography Software Tool for Diffusion MRI Analysis. https://dsi-studio.labsolver.org/. [Google Scholar]
  8. L. Fan, H. Li, J. Zhuo, Y. Zhang, J. Wang, L. Chen, Z. Yang, C. Chu, S. Xie, A.R. Laird, P.T. Fox, S.B. Eickhoff, C. Yu and T. Jiang, The human Brainnetome Atlas: A new brain Atlas based on connectional architecture. Cereb. Cortex 26 (2016) 3508–3526. [CrossRef] [PubMed] [Google Scholar]
  9. S. Fornari, A. Sch¨afer, M. Jucker, A. Goriely and E. Kuhl, Prion-like spreading of Alzheimer’s disease within the brain’s connectome. J. R. Soc. Interface 16 (2019) 20190356. [CrossRef] [PubMed] [Google Scholar]
  10. B. Franchi and S. Lorenzani, From a microscopic to a macroscopic model for Alzheimer disease: Two-scale homogenization of the Smoluchowski equation in perforated domains. J. Nonlinear Sci. 26 (2016) 717–753. [CrossRef] [MathSciNet] [Google Scholar]
  11. C. Godsil and G. Royle, Algebraic Graph Theory, 1st edition. Springer (2001). [CrossRef] [Google Scholar]
  12. A. Goriely, E. Kuhl and C. Bick, Neuronal oscillations on evolving networks: Dynamics, damage, degradation, decline, dementia, and death. Phys. Rev. Lett. 125 (2020) 128102. [CrossRef] [PubMed] [Google Scholar]
  13. J.H. Halton, A retrospective and prospective survey of the Monte Carlo method. SIAM Rev. 12 (1970) 1–63. [CrossRef] [MathSciNet] [Google Scholar]
  14. H. Hampel, K. Bürger, S.J. Teipel, A.L.W. Bokde, H. Zetterberg and K. Blennow, Core candidate neurochemical and imaging biomarkers of Alzheimer’s disease. Alzheimer’s Dementia J. Alzheimer’s Assoc. 4 (2008) 38–48. [CrossRef] [PubMed] [Google Scholar]
  15. H. Hampel, J. Hardy, K. Blennow, C. Chen, G. Perry, S.H. Kim, V.L. Villemagne, P. Aisen, M. Vendruscolo, T. Iwatsubo, C.L. Masters, M. Cho, L. Lannfelt, J.L. Cummings and A. Vergallo, The Amyloid-β pathway in Alzheimer’s disease. Mol. Psychiatry 26 (2021) 5481–5503. [CrossRef] [PubMed] [Google Scholar]
  16. W.K. Hastings, Monte Carlo sampling methods using Markov Chains and their applications. Biometrika 57 (1970) 97–109. [NASA ADS] [CrossRef] [Google Scholar]
  17. C.R. Jack, H.J. Wiste, T.G. Lesnick, S.D. Weigand, D.S. Knopman, P. Vemuri, V.S. Pankratz, M.L. Senjem, J.L. Gunter, M.M. Mielke, V.J. Lowe, B.F. Boeve and R.C. Petersen, Brain β-amyloid load approaches a plateau. Neurology 80 (2013) 890–896. [CrossRef] [PubMed] [Google Scholar]
  18. D. Kaliuzhnyi-Verbovetskyi and G.S. Medvedev, The semilinear heat equation on sparse random graphs. SIAM J. Math. Anal. 49 (2017) 1333–1355. [CrossRef] [MathSciNet] [Google Scholar]
  19. P.J. LaMontagne, T.L. Benzinger, J.C. Morris, S. Keefe, R. Hornbeck, C. Xiong, E. Grant, J. Hassenstab, K. Moulder, A.G. Vlassenko, M.E. Raichle, C. Cruchaga and D. Marcus, Oasis-3: Longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and alzheimer disease. medRxiv (2019). [Google Scholar]
  20. F. Nobile, R. Tempone and C.G. Webster, A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46 (2008) 2309–2345. [CrossRef] [MathSciNet] [Google Scholar]
  21. C. Piazzola and L. Tamellini, The Sparse Grids Matlab kit – a Matlab implementation of sparse grids for high-dimensional function approximation and uncertainty quantification. Preprint: arXiv:2203.09314 (2022). [Google Scholar]
  22. C.P. Robert and G. Casella, Monte Carlo Statistical Methods, 2nd edition. Springer (1999). [CrossRef] [Google Scholar]
  23. S. Salsa, Partial Differential Equations in Action: from Modeling to Theory, 3rd edition. Springer (2016). [CrossRef] [Google Scholar]
  24. A. Sch¨afer, J. Weickenmeier and E. Kuhl, The interplay of biochemical and biomechanical degeneration in Alzheimer’s disease. Comput. Methods Appl. Mech. Eng. 352 (2019) 369–388. [CrossRef] [Google Scholar]
  25. A. Sch¨afer, E.C. Mormino and E. Kuhl, Network diffusion modeling explains longitudinal tau PET data. Front. Neurosci. 14 (2020) 566876. [CrossRef] [Google Scholar]
  26. A. Sch¨afer, M. Peirlinck, K. Linka, E. Kuhl and ADNI, Bayesian physics-based modeling of Tau propagation in Alzheimer’s disease. Front. Physiol. 12 (2021) 1081. [Google Scholar]
  27. A. Sch¨afer, P. Chaggar, A. Goriely, E. Kuhl and ADNI, Correlating tau pathology to brain atrophy using a physics-based Bayesian model. Eng. Comput. 38 (2022) 3867–3877. [CrossRef] [Google Scholar]
  28. P. Scheltens, B. De Strooper, M. Kivipelto, H. Holstege, G. Chtelat, C.E. Teunissen, J. Cummings and W.M. van der Flier, Alzheimer’s disease. The Lancet 397 (2021) 1577–1590. [CrossRef] [Google Scholar]
  29. C.G. Schwarz, M.L. Senjem, J.L. Gunter, N. Tosakulwong, S.D. Weigand, B.J. Kemp, A.J. Spychalla, P. Vemuri, R.C. Petersen, V.J. Lowe and C.R. Jack, Optimizing PiB-PET SUVR change-over-time measurement by a large-scale analysis of longitudinal reliability, plausibility, separability, and correlation with MMSE. Neuroimage 144 (2017) 113–127. [CrossRef] [PubMed] [Google Scholar]
  30. A.J. Smola and R. Kondor, Kernels and Regularization on Graphs, in Learning Theory and Kernel Machines. Springer (2003) 144–158. [CrossRef] [Google Scholar]
  31. Y. Su, S. Flores, G. Wang, R.C. Hornbeck, B. Speidel, N. Joseph-Mathurin, A.G. Vlassenko, B.A. Gordon, R.A. Koeppe, W.E. Klunk, C.R. Jack Jr., M.R. Farlow, S. Salloway, B.J. Snider, S.B. Berman, E.D. Roberson, J. Brosch, I. Jimenez-Velazques, C.H. van Dyck, D. Galasko, S.H. Yuan, S. Jayadev, L.S. Honig, S. Gauthier, G.-Y.R. Hsiung, M. Masellis, W.S. Brooks, M. Fulham, R. Clarnette, C.L. Masters, D. Wallon, D. Hannequin, B. Dubois, J. Pariente, R. Sanchez-Valle, C. Mummery, J.M. Ringman, M. Bottlaender, G. Klein, S. Milosavljevic-Ristic, E. McDade, C. Xiong, J.C. Morris, R.J. Bateman and T.L. Benzinger, Comparison of Pittsburgh compound B and florbetapir in cross-sectional and longitudinal studies. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 11 (2019) 180–190. [CrossRef] [Google Scholar]
  32. L.M. Valnes, S.K. Mitusch, G. Ringstad, P.K. Eide, S.W. Funke and K.-A. Mardal, Apparent diffusion coefficient estimates based on 24 hours tracer movement support glymphatic transport in human cerebral cortex. Sci. Rep. 10 (2020) 9176. [CrossRef] [Google Scholar]
  33. W.M. van Oostveen and E.C.M. de Lange, Imaging techniques in Alzheimer’s disease: A review of applications in early diagnosis and longitudinal monitoring. Int. J. Mol. Sci. 22 (2021) 2110. [CrossRef] [Google Scholar]
  34. L.C. Walker and M. Jucker, Neurodegenerative diseases: Expanding the prion concept. Annu. Rev. Neurosci. 38 (2015) 87–103. [CrossRef] [PubMed] [Google Scholar]
  35. J. Weickenmeier, M. Jucker, A. Goriely and E. Kuhl, A physics-based model explains the prion-like features of neurode-generation in Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. J. Mech. Phys. Solids 124 (2019) 264–281. [CrossRef] [Google Scholar]
  36. F.-C. Yeh, Shape analysis of the human association pathways. Neuroimage 223 (2020) 117329. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you