Open Access
Issue
ESAIM: M2AN
Volume 58, Number 6, November-December 2024
Special issue - To commemorate Assyr Abdulle
Page(s) 2155 - 2186
DOI https://doi.org/10.1051/m2an/2024001
Published online 04 December 2024
  1. M. Abramowitz and I.A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards Applied Mathematics Series, No. 55. U.S. Government Printing Office, Washington, D.C. (1964). [Google Scholar]
  2. N.M. Atakishiyev and K.B. Wolf, Fractional Fourier-Kravchuk transform. J. Opt. Soc. Am. A 14 (1997) 1467–1477. [CrossRef] [Google Scholar]
  3. N. Ben Abdallah, F. Castella and F. Méhats, Time averaging for the strongly confined nonlinear Schrödinger equation, using almost-periodicity. J. Differ. Equ. 245 (2008) 154–200. [CrossRef] [Google Scholar]
  4. J. Bernier, Optimality and resonances in a class of compact finite difference schemes of high order. Calcolo 56 (2018) 12. [Google Scholar]
  5. P. Diaconis and R. Griffiths, An introduction to multivariate Krawtchouk polynomials and their applications. J. Stat. Plan. Inference 154 (2014) 39–53. [CrossRef] [Google Scholar]
  6. D. Funaro, Polynomial Approximations of Differential Equations. Springer-Verlag, Berlin (1992). [CrossRef] [Google Scholar]
  7. B. Helffer, Théorie spectrale pour des opérateurs globalement elliptiques. In Vol. 112 of Astérisque, Société Mathématique de France. Paris (1984). [Google Scholar]
  8. V.I. Levenshtein, Krawtchouk polynomials and universal bounds for codes and designs in Hamming spaces. IEEE Trans. Inf. Theory 41 (1995) 1303–1321. [CrossRef] [Google Scholar]
  9. M. Lorente, Continuous vs. discrete models for the quantum harmonic oscillator and the hydrogen atom. Phys. Lett. A 285 (2001) 119–126. [CrossRef] [MathSciNet] [Google Scholar]
  10. C. Moler and C. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45 (2003) 3–49. [CrossRef] [MathSciNet] [Google Scholar]
  11. A.F. Nikiforov, S.K. Suslov and V.B. Uvarov, Classical orthogonal polynomials of a discrete variable. Springer Series in Computational Physics. Springer-Verlag, Berlin (1991). [CrossRef] [Google Scholar]
  12. J. Shen, Stable and efficient spectral methods in unbounded domains using laguerre functions. SIAM J. Numer. Anal. 38 (2000) 1113–1133. [CrossRef] [MathSciNet] [Google Scholar]
  13. M. Stobińska, A. Buraczewski, M. Moore, W.R. Clements, J.J. Renema, S.W. Nam, T. Gerrits, A. Lita, W.S. Kolthammer, A. Eckstein and I.A. Walmsley, Quantum interference enables constant-time quantum information processing. Sci. Adv. 5 (2019) eaau9674. [CrossRef] [Google Scholar]
  14. J.C. Strikwerda, Finite difference schemes and partial differential equations, 2nd edition. In: Society for Industrial and Applied Mathematics (2004). [Google Scholar]
  15. G. Szeg˝o, Orthogonal polynomials, 4th edition. In Vol. XXIII of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, R.I. (1975). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you