Open Access
Issue
ESAIM: M2AN
Volume 58, Number 6, November-December 2024
Special issue - To commemorate Assyr Abdulle
Page(s) 2351 - 2386
DOI https://doi.org/10.1051/m2an/2024059
Published online 04 December 2024
  1. D. Arndt, W. Bangerth, B. Blais, M. Fehling, R. Gassmöller, T. Heister, L. Heltai, U. Köcher, M. Kronbichler, M. Maier, P. Munch, J.P. Pelteret, S. Proell, K. Simon, B. Turcksin, D. Wells and J. Zhang, The deal.II library, version 9.3. J. Numer. Math. (2021, accepted for publication). https://dealii.org/deal93-preprint.pdf. [Google Scholar]
  2. D.N. Arnold, An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742–760. [CrossRef] [MathSciNet] [Google Scholar]
  3. D.N. Arnold, F. Brezzi, B. Cockburn and L. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 1749–1779. [CrossRef] [Google Scholar]
  4. G.A. Baker, Finite element methods for elliptic equations using nonconforming elements. Math. Comput. 137 (1977) 45–59. [CrossRef] [Google Scholar]
  5. D. Becherer and M. Schweizer, Classical solutions to reaction-diffusion systems for hedging problems with interacting itô and point processes. Ann. Appl. Prob. 2 (2005) 1111–1144. [Google Scholar]
  6. M. Bolten and H. Rittich, Fourier analysis of periodic stencils in multigrid methods. SIAM J. Sci. Comput. 40 (2018) A1642–A1668. [CrossRef] [Google Scholar]
  7. A. Brandt, Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31 (1977) 333–390. [CrossRef] [Google Scholar]
  8. A. Brandt, Rigorous quantitative analysis of multigrid. I. Constant coefficients two-level cycle with L2-norm. SIAM J. Numer. Anal. 6 (1994) 1695–1730. [CrossRef] [MathSciNet] [Google Scholar]
  9. J. Brown, Y. He and S. MacLachlan, Local fourier analysis of balancing domain decomposition by constraints algorithms. SIAM J. Sci. Comput. 41 (2019) S346–S369. [CrossRef] [Google Scholar]
  10. R. Dautray and J.L. Lions, Mathematical analysis and numerical methods for science and technology, in Functional and Variational Methods. Vol. 2. Springer-Verlag, Berlin (1985). [Google Scholar]
  11. M. Dryja and P. Krzy˙zanowski, A massively parallel nonoverlapping additive Schwarz method for discontinuous Galerkin discretization of elliptic problems. Numer. Math. 132 (2016) 347–367. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  12. X. Feng and O. Karakashian, Two-level non-overlapping Schwarz methods for a discontinuous Galerkin method. SIAM J. Numer. Anal. 39 (2001) 1343–1365. [CrossRef] [MathSciNet] [Google Scholar]
  13. P.C. Fife, Mathematical Aspects of Reacting and Diffusing Systems. Springer Verlag, Berlin (1979). [CrossRef] [Google Scholar]
  14. M.J. Gander and J.P. Lucero Lorca, Should multilevel methods for discontinuous Galerkin discretizations use discontinuous interpolation operators? in Domain Decomposition Methods in Science and Engineering XXVI, edited by S.C. Brenner, E. Chung, A. Klawonn, F. Kwok, J. Xu and J. Zou. Springer International Publishing, Cham (2022) 273–280. [Google Scholar]
  15. G. Gie, M. Hamouda, C. Jung and R. Temam, Singular perturbations and boundary layers, in Applied Mathematical Sciences. Springer International Publishing, Cham (2018). https://books.google.ch/books?id=d2V7DwAAQBAJ. [CrossRef] [Google Scholar]
  16. Y. He and S. MacLachlan, Two-level Fourier analysis of multigrid for higher-order finite-element discretizations of the Laplacian. Numer. Linear Algebra Appl. 27 (2020) e2285. [CrossRef] [MathSciNet] [Google Scholar]
  17. Y. He, S. Rhebergen and H.D. Sterck, Local Fourier analysis of multigrid for hybridized and embedded discontinuous Galerkin methods. SIAM J. Sci. Comput. 43 (2021) S612–S636. [CrossRef] [Google Scholar]
  18. P. Hemker, W. Hoffmann and M. van Raalte, Two-level Fourier analysis of a multigrid approach for discontinuous Galerkin discretization. SIAM J. Sci. Comput. 3 (2003) 1018–1041. [CrossRef] [MathSciNet] [Google Scholar]
  19. P.W. Hemker, W. Hoffmann and M.H. van Raalte, Fourier two-level analysis for discontinuous Galerkin discretization with linear elements. Numer. Linear Algebra Appl. 5–6 (2004) 473–491. [CrossRef] [MathSciNet] [Google Scholar]
  20. K. Kahl and N. Kintscher, Automated local Fourier analysis (aLFA). BIT Numer. Math. 60 (2020) 1572–9125. [Google Scholar]
  21. G. Kanschat and J.P. Lucero Lorca, A weakly penalized discontinuous Galerkin method for radiation in dense, scattering media. CMAM 16 (2016) 563–577. [CrossRef] [Google Scholar]
  22. O. Karakashian and C. Collins, Two-level additive Schwarz methods for discontinuous Galerkin approximations of second-order elliptic problems. IMA J. Numer. Anal. 37 (2017) 1800–1830. [MathSciNet] [Google Scholar]
  23. N. Kopteva and E. O’Riordan, Shishkin meshes in the numerical solution of singularly perturbed differential equations. Int. J. Numer. Anal. Model. 7 (2010) 393–415. [MathSciNet] [Google Scholar]
  24. D.Y. Le Roux, C. Eldred and M.A. Taylor, Fourier analyses of high-order continuous and discontinuous Galerkin methods. SIAM J. Numer. Anal. 58 (2020) 1845–1866. [CrossRef] [MathSciNet] [Google Scholar]
  25. A.J. Lew and G.C. Buscaglia, A discontinuous-Galerkin-based immersed boundary method. Int. J. Numer. Methods Eng. 76 (2008) 427–454. [CrossRef] [Google Scholar]
  26. J.P. Lucero Lorca and G. Kanschat, Multilevel Schwarz preconditioners for singularly perturbed symmetric reaction-diffusion systems. Electron. Trans. Numer. Anal. 54 (2021) 89–107. [Google Scholar]
  27. T.A. Manteuffel and K.J. Ressel, Least-squares finite-element solution of the neutron transport equation in diffusive regimes. SIAM J. Numer. Anal. 35 (1998) 806–835. [CrossRef] [MathSciNet] [Google Scholar]
  28. J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei der Verwendung von Teilr¨aumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36 (1971) 9–15. [CrossRef] [MathSciNet] [Google Scholar]
  29. F.J. Rodrigo CarmenGaspar and L.T. Zikatanov, On the validity of the local Fourier analysis. J. Comput. Math. 37 (2018) 340–348. [Google Scholar]
  30. J. Smoller, Shock Waves and Reaction–Diffusion Equations. No. 258 in XXI, 581 S., 162 Abb., DM 128. Springer, Berlin (1983). [CrossRef] [Google Scholar]
  31. J. van der Vegt and S. Rhebergen, HP-multigrid as smoother algorithm for higher order discontinuous Galerkin discretizations of advection dominated flows: Part I. Multilevel analysis. J. Comput. Phys. 231 (2012) 7537–7563. [CrossRef] [MathSciNet] [Google Scholar]
  32. J. van der Vegt and S. Rhebergen, HP-multigrid as smoother algorithm for higher order discontinuous Galerkin discretizations of advection dominated flows. Part II: optimization of the rungekutta smoother. J. Comput. Phys. 231 (2012) 7564–7583. [CrossRef] [MathSciNet] [Google Scholar]
  33. M.F. Wheeler, An elliptic collocation finite element method with interior penalties. SIAM J. Numer. Anal. 39 (1978) 152–161. [CrossRef] [MathSciNet] [Google Scholar]
  34. Y. Zhou, Fourier analysis and local fourier analysis for multigrid methods. Master’s thesis. Johannes Kepler Universit¨at Linz (2009). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you