Open Access
Issue |
ESAIM: M2AN
Volume 59, Number 1, January-February 2025
|
|
---|---|---|
Page(s) | 73 - 99 | |
DOI | https://doi.org/10.1051/m2an/2024056 | |
Published online | 08 January 2025 |
- N. Ay, J. Jost, H. Le and L. Schwachhofer, Information Geometry. Springer, Cham (2017). [CrossRef] [Google Scholar]
- J.D. Benamou, T.O. Gallouët and F.X. Vialard, Second-order models for optimal transport and cubic splines on the wasserstein space. Found. Comput. Math. 19 (2019) 1113–1143. [CrossRef] [MathSciNet] [Google Scholar]
- R. Chakraborty and B.C. Vemuri, Statistics on the compact Stiefel manifold: theory and applications. Ann. Stat. 47 (2017) 415–438. [Google Scholar]
- Y. Chen, G. Conforti and T.T. Georgiou, Measure-valued spline curves: an optimal transport viewpoint. SIAM J. Math. Anal. 50 (2018) 5947–5968. [CrossRef] [MathSciNet] [Google Scholar]
- A. Cherian and J. Wang, Generalized one-class learning using pairs of complementary classifiers. IEEE TPAMI 43 (2021) 420–433. [CrossRef] [PubMed] [Google Scholar]
- S. Chewi, J. Clancy, T. Le Gouic, P. Rigollet, G. Stepaniants and A. Stromme, Fast and smooth interpolation on Wasserstein space, in Proceedings of Machine Learning Research. Vol. 130. PMLR (2021). [Google Scholar]
- I.L. Dryden and K.V. Mardia, Statistical Shape Analysis, with Applications in R. John Wiley and Sons, Chichester (2016). [Google Scholar]
- N. Dyn, Linear and nonlinear subdivision schemes in geometric modeling, in Foundations of Computational Mathematics. London Mathematical Society Lecture Note Series. Vol. 363. Hong Kong (2008) 68–92. [Google Scholar]
- O. Freifel, S. Hauberg and M.J. Black, Model transport: towards scalable transfer learning on manifolds, in IEEE Conference on Computer Vision and Pattern Recognition. IEEE (2014). [Google Scholar]
- B. Geir, M. Klas and V. Olivier, Numerical algorithm for c2-splines on symmetric spaces. SIAM J. Numer. Anal. 56 (2018) 2623–2647. [CrossRef] [MathSciNet] [Google Scholar]
- J. Hinkle, P.T. Fletcher and S. Joshi, Intrinsic polynomials for regression on Riemannian manifolds. J. Math. Imaging Vis. 50 (2014) 32–52. [CrossRef] [Google Scholar]
- M. Itoh and H. Satoh, Geometry of fisher information metric and the barycenter map. Entropy 17 (2015) 1814–1849. [CrossRef] [MathSciNet] [Google Scholar]
- B. Jérémie, G. Raúl, K. Thierry and L. Alfredo, Geodesic PCA in the wasserstein space by convex PCA. Ann. l’Inst. Henri Poincaré 53 (2017) 1–26. [Google Scholar]
- W. Jonathan and B. Francis, Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance. Bernoulli 25 (2019) 2620–2648. [CrossRef] [MathSciNet] [Google Scholar]
- B.V. Julio, F. Joaquin, R. Gonzalo and T. Felipe, Bayesian learning with Wasserstein barycenters. Preprint arXiv:1805.10833 (2018). [Google Scholar]
- A. Karimi, L. Ripani and T.T. Georgiou, Statistical learning in wasserstein space. IEEE Control Syst. Lett. 5 (2021) 899–904. [CrossRef] [MathSciNet] [Google Scholar]
- K.R. Kim, I.L. Dryden and H. Le, Smoothing splines on Riemannian manifolds, with applications to 3d shape space. R. Stat. Soc. 83 (2020) 108–132. [Google Scholar]
- L. Lin, B. St.Thomas, H. Zhu and D.B. Dunson, Extrinsic local regression on manifold-valued data. J. Am. Stat. Assoc. 112 (2017) 1261–1273. [CrossRef] [PubMed] [Google Scholar]
- G. Mustafa and R. Hameed, Families of non-linear subdivision schemes for scattered data fitting and their non-tensor product extensions. Appl. Math. Comput. 359 (2019) 214–240. [CrossRef] [MathSciNet] [Google Scholar]
- E. Nava-Yazdani and K. Polthier, De Casteljau’s algorithm on manifolds. Comput. Aided Geom. Des. 30 (2013) 722–732. [CrossRef] [Google Scholar]
- A. Petersen and H.-G. Müller, Fréchet regression for random objects with Euclidean predictors. Ann. Stat. 47 (2019) 691–719. [CrossRef] [Google Scholar]
- T. Popiel and L. Noakes, c2 spherical Bézier splines. Comput. Aided Geom. Des. 23 (2006) 261–275. [CrossRef] [Google Scholar]
- T. Popiel and L. Noakes, Bézier curves and c2 interpolation in Riemannian manifolds. J. Approx. Theory 148 (2007) 111–127. [CrossRef] [MathSciNet] [Google Scholar]
- T. Shingel, Interpolation in special orthogonal groups. IMA J. Numer. Anal. 29 (2009) 731–745. [CrossRef] [MathSciNet] [Google Scholar]
- F. Silva Leite and L. Machado, Fitting smooth paths on Riemannian manifolds. Int. J. Appl. Math. Stat. 6 (2006) 25–53. [MathSciNet] [Google Scholar]
- C. Sinho, M. Tyler, R. Philippe and J.S. Austin, Gradient descent algorithms for Bures-Wasserstein barycenters, in Proceedings of Thirty Third Conference on Learning Theory, edited by J. Abernethy and S. Agarwal. Vol. 125. PMLR (2020) 1276–1304. [Google Scholar]
- J. Wallner, E. Nava Yazdani and P. Grohs, Smoothness properties of lie group subdivision schemes. Multiscale Model. Simul. 6 (2007) 493–505. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.