Open Access
Issue
ESAIM: M2AN
Volume 59, Number 1, January-February 2025
Page(s) 43 - 71
DOI https://doi.org/10.1051/m2an/2024062
Published online 08 January 2025
  1. M. Abbaszadeh and M. Dehghan, Direct meshless local Petrov–Galerkin (DMLPG) method for time-fractional fourth-order reaction-diffusion problem on complex domains. Comput. Math. Appl. 79 (2020) 876–888. [CrossRef] [MathSciNet] [Google Scholar]
  2. M. Al-Maskari and S. Karaa, The time-fractional Cahn-Hilliard equation: analysis and approximation. IMA J. Numer. Anal. 42 (2022) 1831–1865. [CrossRef] [MathSciNet] [Google Scholar]
  3. I. Babuška and J. Osborn, Eigenvalue problems, Handbook of Numerical Analysis. Vol. II (1991) 641–787. [Google Scholar]
  4. A. Bensoussan, G.D. Prato, M.C. Delfour and S.K. Mitter, Representation and control of infinite dimensional systems, Second, Systems & Control: Foundations & Applications. Birkh¨auser Boston, Inc., Boston, MA (2007). [CrossRef] [Google Scholar]
  5. S.C. Brenner and L.-Y. Sung, C0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22/23 (2005) 83–118. [Google Scholar]
  6. H. Brezis, Analyse Fonctionnelle. Masson, Paris (1983). [Google Scholar]
  7. C. Carstensen and N. Nataraj, Lowest-order equivalent nonstandard finite element methods for biharmonic plates. ESAIM Math. Model. Numer. Anal. 56 (2022) 41–78. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  8. C. Carstensen, D. Gallistl and N. Nataraj, Comparison results of nonstandard P2 finite element methods for the biharmonic problem. ESAIM Math. Model. Numer. Anal. 49 (2015) 977–990. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  9. C. Chen and T. Shih, Finite Element Methods for Integrodifferential Equations. Series on Applied Mathematics. Vol. 9. World Scientific Publishing Co., Inc., River Edge, NJ (1998). [CrossRef] [Google Scholar]
  10. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. Studies in Mathematics and its Applications. Vol. 4. North-Holland Publishing Co., Amsterdam-New York-Oxford (1978). [Google Scholar]
  11. M. Cui, A compact difference scheme for time-fractional Dirichlet biharmonic equation on temporal graded meshes. East Asian J. Appl. Math. 11 (2021) 164–180. [CrossRef] [MathSciNet] [Google Scholar]
  12. P. Danumjaya, A.K. Pany and A.K. Pani, Morley FEM for the fourth-order nonlinear reaction–diffusion problems. Comput. Math. Appl. 99 (2021) 229–245. [CrossRef] [MathSciNet] [Google Scholar]
  13. Y. Du, Y. Liu, H. Li, Z. Fang and S. He, Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation. J. Comput. Phys. 344 (2017) 108–126. [CrossRef] [MathSciNet] [Google Scholar]
  14. L.C. Evans, Partial Differential Equations. Vol. 19. American Mathematical Society, Providence, RI (2010). [Google Scholar]
  15. P. Grisvard, Singularities in boundary value problems, Recherches en Mathématiques Appliquées. Research in Applied Mathematics. Vol. 22. Masson, Springer-Verlag, Paris, Berlin (1992). [Google Scholar]
  16. A.R. Hadhoud, Quintic non-polynomial spline method for solving the time fractional biharmonic equation. Appl. Math. Inf. Sci. 13 (2019) 507–513. [CrossRef] [MathSciNet] [Google Scholar]
  17. F. Hecht, New development in freefem++. J. Numer. Math. 20 (2012) 251–265. [Google Scholar]
  18. C. Huang and M. Stynes, α-robust error analysis of a mixed finite element method for a time-fractional biharmonic equation. Numer. Algorithms 87 (2021) 1749–1766. [CrossRef] [MathSciNet] [Google Scholar]
  19. C. Huang, N. An and H. Chen, Local H1-norm error analysis of a mixed finite element method for a time-fractional biharmonic equation. Appl. Numer. Math. 173 (2022) 211–221. [CrossRef] [MathSciNet] [Google Scholar]
  20. H. Jafari, M. Dehghan and K. Sayevand, Solving a fourth-order fractional diffusion-wave equation in a bounded domain by decomposition method. Numer. Methods Part. Differ. Equ. 24 (2008) 1115–1126. [CrossRef] [Google Scholar]
  21. B. Jin, R. Lazarov, J. Pasciak and Z. Zhou, Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion. IMA J. Numer. Anal. 35 (2015) 561–582. [CrossRef] [MathSciNet] [Google Scholar]
  22. S. Karaa, K. Mustapha and A.K. Pani, Optimal error analysis of a FEM for fractional diffusion problems by energy arguments. J. Sci. Comput. 74 (2018) 519–535. [CrossRef] [MathSciNet] [Google Scholar]
  23. A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Vol. 204. Elsevier, Amsterdam (2006). [Google Scholar]
  24. K.N. Le, W. McLean and K. Mustapha, Numerical solution of the time-fractional Fokker–Planck equation with general forcing. SIAM J. Numer. Anal. 54 (2016) 1763–1784. [CrossRef] [MathSciNet] [Google Scholar]
  25. M. Li, J. Zhao, C. Huang and S. Chen, Conforming and nonconforming VEMs for the fourth-order reaction-subdiffusion equation: a unified framework. IMA J. Numer. Anal. 42 (2022) 2238–2300. [CrossRef] [MathSciNet] [Google Scholar]
  26. Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225 (2007) 1533–1552. [Google Scholar]
  27. Y. Liu, Z. Fang, H. Li and S. He, A mixed finite element method for a time-fractional fourth-order partial differential equation. Appl. Math. Comput. 243 (2014) 703–717. [CrossRef] [MathSciNet] [Google Scholar]
  28. Y. Liu, Y. Du, H. Li, S. He and W. Gao, Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction-diffusion problem. Comput. Math. Appl. 70 (2015) 573–591. [CrossRef] [MathSciNet] [Google Scholar]
  29. Y. Liu, Y. Du, H. Li, J. Li and S. He, A two-grid mixed finite element method for a nonlinear fourth-order reaction-diffusion problem with time-fractional derivative. Comput. Math. Appl. 70 (2015) 2474–2492. [CrossRef] [MathSciNet] [Google Scholar]
  30. S. Mahata and R.K. Sinha, Nonsmooth data optimal error estimates by energy arguments for subdiffusion equations with memory. Adv. Comput. Math. 48 (2022) 1–21. [CrossRef] [MathSciNet] [Google Scholar]
  31. S. Mahata, N. Nataraj and J.-P. Raymond, Lowest-order nonstandard finite element methods for time-fractional biharmonic problem. Preprint arXiv:2405.11339v1 [math.NA] (2024). [Google Scholar]
  32. K. Mustapha, FEM for time-fractional diffusion equations, novel optimal error analyses. Math. Comput. 87 (2018), 2259–2272. [Google Scholar]
  33. K. Mustapha and D. Schötzau, Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations. IMA J. Numer. Anal. 34 (2014) 1426–1446. [CrossRef] [MathSciNet] [Google Scholar]
  34. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences. Vol. 44. Springer-Verlag, New York (1983). [CrossRef] [Google Scholar]
  35. I. Podlubny, Fractional Differential Equations. Vol. 198. Academic Press, San Diego, CA (1999). [Google Scholar]
  36. K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382 (2011) 426-447. [CrossRef] [MathSciNet] [Google Scholar]
  37. S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives. Gordon and Breach Science Publishers, Yverdon (1993). [Google Scholar]
  38. Z.-Z. Sun and X. Wu, A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56 (2006) 193–209. [Google Scholar]
  39. L. Wei and Y. He, Analysis of a fully discrete local discontinuous Galerkin method for time-fractional fourth-order problems. Appl. Math. Model. 38 (2014) 1511–1522. [CrossRef] [MathSciNet] [Google Scholar]
  40. A. Yazdani, H. Momeni and M.S. Cheichan, A weak Galerkin/finite difference method for time-fractional biharmonic problems in two dimensions. J. Comput. Appl. Math. 410 (2022) 1–12. [Google Scholar]
  41. P. Zhang and H. Pu, A second-order compact difference scheme for the fourth-order fractional sub-diffusion equation. Numer. Algorithms 76 (2017) 573–598. [CrossRef] [MathSciNet] [Google Scholar]
  42. H. Zhang, X. Yang and D. Xu, An efficient spline collocation method for a nonlinear fourth-order reaction subdiffusion equation. J. Sci. Comput. 85 (2020) 18. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you