Open Access
Issue |
ESAIM: M2AN
Volume 59, Number 1, January-February 2025
|
|
---|---|---|
Page(s) | 291 - 330 | |
DOI | https://doi.org/10.1051/m2an/2024074 | |
Published online | 08 January 2025 |
- N. Aronszajn, Theory of reproducing kernels. Trans. Am. Math. Soc. 68 (1950) 337–404. [Google Scholar]
- F. Ballarin, G. Rozza and M. Strazzullo, Chapter 9 – Space-time POD-Galerkin approach for parametric flow control, in Numerical Control: Part A. Vol. 23 of Handbook of Numerical Analysis, edited by E. Trélat and E. Zuazua. Elsevier, Amsterdam, The Netherlands (2022) 307–338. [Google Scholar]
- P. Benner, S. Gugercin and K. Willcox, A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57 (2015) 483–531. [Google Scholar]
- B. Bohn, C. Rieger and M. Griebel, A representer theorem for deep kernel learning. J. Mach. Learn. Res. 20 (2019) 2302–2333. [Google Scholar]
- A. Cohen and R. DeVore, Approximation of high-dimensional parametric PDEs. Acta Numer. 24 (2015) 1–159. [CrossRef] [MathSciNet] [Google Scholar]
- A. Cohen and R. DeVore, Kolmogorov widths under holomorphic mappings. IMA J. Numer. Anal. 36 (2016) 1–12. [Google Scholar]
- J. Crank and P. Nicolson, A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Math. Proc. Camb. Philos. Soc. 43 (1947) 50–67. [Google Scholar]
- N. Dal Santo, S. Deparis and L. Pegolotti, Data driven approximation of parametrized PDEs by reduced basis and neural networks. J. Comput. Phys. 416 (2020) 109550. [Google Scholar]
- T. Daniel, F. Casenave, N. Akkari and D. Ryckelynck, Model order reduction assisted by deep neural networks (ROM-net). Adv. Model. Simul. Eng. Sci. 7 (2020) 16. [CrossRef] [Google Scholar]
- L. Dedè, Reduced basis method and error estimation for parametrized optimal control problems with control constraints. SIAM J. Sci. Comput. 50 (2012) 287–305. [Google Scholar]
- R. DeVore, G. Petrova and P. Wojtaszczyk, Greedy algorithms for reduced bases in Banach spaces. Constr. Approx. 37 (2013) 455–466. [CrossRef] [MathSciNet] [Google Scholar]
- T. Ehring and B. Haasdonk, Hermite kernel surrogates for the value function of high-dimensional nonlinear optimal control problems. Adv. Comput. Math. 50 (2024) 36. [CrossRef] [Google Scholar]
- G.H. Golub and C.F. Van Loan, Matrix Computations, 3rd edition. The Johns Hopkins University Press, Baltimore, Maryland (1996). [Google Scholar]
- C. Gr¨aßle, M. Hinze and S. Volkwein, Model order reduction by proper orthogonal decomposition, in Model Order Reduction. Vol. 2 Snapshot-Based Methods and Algorithms, edited by P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W. Schilders and L.M. Silveira. De Gruyter, Berlin, Boston (2021) 47–96. [Google Scholar]
- C. Greif and K. Urban, Decay of the Kolmogorov N-width for wave problems. Appl. Math. Lett. 96 (2019) 216–222. [CrossRef] [MathSciNet] [Google Scholar]
- M. Guo and J.S. Hesthaven, Reduced order modeling for nonlinear structural analysis using Gaussian process regression. Comput. Methods Appl. Mech. Eng. 341 (2018) 807–826. [CrossRef] [Google Scholar]
- B. Haasdonk and M. Ohlberger, Efficient reduced models and a posteriori error estimation for parametrized dynamical systems by offline/online decomposition. Math. Comput. Model. Dyn. Syst. 17 (2011) 145–161. [Google Scholar]
- B. Haasdonk, H. Kleikamp, M. Ohlberger, F. Schindler and T. Wenzel, A new certified hierarchical and adaptive RB-ML-ROM surrogate model for parametrized PDEs. SIAM J. Sci. Comput. 45 (2023) A1039–A1065. [Google Scholar]
- J.K. Hale, Ordinary Differential Equations, 2nd edition. Robert E. Krieger Publishing Company, Malabar, Florida (1980). [Google Scholar]
- C.R. Harris, K. Jarrod Millman, S.J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N.J. Smith, R. Kern, M. Picus, S. Hoyer, M.H. van Kerkwijk, M. Brett, A. Haldane, J.F. del Río, Mark Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke and T.E. Oliphant, Array programming with NumPy. Nature 585 (2020) 357–362. [Google Scholar]
- J.S. Hesthaven and S. Ubbiali, Non-intrusive reduced order modeling of nonlinear problems using neural networks. J. Comput. Phys. 363 (2018) 55–78. [Google Scholar]
- J.S. Hesthaven, G. Rozza and B. Stamm, Certified Reduced Basis Methods for Parametrized Partial Differential Equations. SpringerBriefs in Mathematics, Springer, Cham, New York (2016). [Google Scholar]
- M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich. Optimization with PDE Constraints. Springer, Netherlands (2009). [Google Scholar]
- M. Kanagawa, P. Hennig, D. Sejdinovic and B.K. Sriperumbudur, Gaussian processes and kernel methods: a review on connections and equivalences (2018). Preprint: arXiv: 1807.02582. [Google Scholar]
- T. Keil, H. Kleikamp, R.J. Lorentzen, M.B. Oguntola and M. Ohlberger, Adaptive machine learning-based surrogate modeling to accelerate PDE-constrained optimization in enhanced oil recovery. Adv. Comput. Math. 48 (2022) 73. [CrossRef] [Google Scholar]
- H. Kleikamp, M. Lazar and C. Molinari, Python code for “Be greedy and learn: Efficient and certified algorithms for parametrized optimal control problems” (2023). https://zenodo.org/records/8188417. [Google Scholar]
- T. Kmet, Neural network solution of optimal control problem with control and state constraints in Artificial Neural Networks and Machine Learning – ICANN 2011, edited by T. Honkela, W. Duch, M. Girolami and S. Kaski. Springer, Berlin, Heidelberg (2011) 261–268. [Google Scholar]
- M. Lazar and J. Lohéac, Chapter 8 – Control of parameter dependent systems, in Numerical Control: Part A, Vol. 23 of Handbook of Numerical Analysis, edited by E. Trélat and E. Zuazua. Elsevier, Amsterdam (2022) 265–306. [Google Scholar]
- M. Lazar and E. Zuazua, Greedy controllability of finite dimensional linear systems. Automatica 74 (2016) 327–340. [CrossRef] [Google Scholar]
- M. Lazar and E. Zuazua, Greedy search of optimal approximate solutions. Pure Appl. Funct. Anal. 8 (2023) 547–564. [Google Scholar]
- Y. LeCun, Y. Bengio and G. Hinton, Deep learning. Nature 521 (2015) 436–444. [CrossRef] [PubMed] [Google Scholar]
- D.C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization. Math. Program. 45 (1989) 503–528. [Google Scholar]
- J. Mayer, M. Dolgov, T. Stickling, S. Özgen, F. Rosenthal and U.D. Hanebeck, Stochastic optimal control using Gaussian process regression over probability distributions, in 2019 American Control Conference (ACC). Philadelphia (2019) 4847–4853. [Google Scholar]
- R. Milk, S. Rave and F. Schindler, pyMOR – Generic algorithms and interfaces for model order reduction. SIAM J. Sci. Comput. 38 (2016) S194–S216. [Google Scholar]
- C. Molinari, M. Massias, L. Rosasco and S. Villa, Iterative regularization for convex regularizers, in International Conference on Artificial Intelligence and Statistics. Vol. 130 of Proceedings of Machine Learning Research, edited by A. Banerjee and K. Fukumizu. PMLR, San Diego, California (2021) 1684–1692. [Google Scholar]
- A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai and S. Chintala, Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, edited by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox and R. Garnett. Curran Associates, Inc., New York (2019) 8024–8035. [Google Scholar]
- F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot and É. Duchesnay, Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12 (2011) 2825–2830. [Google Scholar]
- P. Petersen and F. Voigtlaender, Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Netw. 108 (2018) 296–330. [Google Scholar]
- J. Peypouquet, Convex Optimization in Normed Spaces: Theory, Methods and Examples. Springer International Publishing, New York (2015). [Google Scholar]
- L. Prechelt, Early stopping – but when? In: Neural Networks: Tricks of the Trade, volume 1524 of LNCS, chapter 2. Springer, Berlin, Heidelberg (1997) 55–69. [Google Scholar]
- C.E. Rasmussen and C.K.I. Williams, Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning. MIT Press, Massachusetts (2006). [Google Scholar]
- D.E. Rumelhart, G.E. Hinton and R.J. Williams, Learning representations by back-propagating errors. Nature 323 (1986) 533–536. [Google Scholar]
- G. Santin and B. Haasdonk, Convergence rate of the data-independent P-greedy algorithm in kernel-based approximation. Dolomit. Res. Notes Approx. 10 (2017) 68–78. [Google Scholar]
- G. Santin and B. Haasdonk, Kernel methods for surrogate modeling. In Vol. 2 Model Order Reduction, edited by P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W. Schilders and L.M. Silveira. De Gruyter, Berlin, Boston (2021). [Google Scholar]
- P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S.J. van der Walt, M. Brett, J. Wilson, K. Jarrod Millman, N. Mayorov, A.R.J. Nelson, E. Jones, R. Kern, E. Larson, C.J. Carey, İ. Polat, Y. Feng, E.W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E.A. Quintero, C.R. Harris, A.M. Archibald, A.H. Ribeiro, F. Pedregosa, P. van Mulbregt and SciPy 1.0 Contributors, SciPy 1.0: fundamental algorithms for scientific computing in python. Nat. Methods 17 (2020) 261–272. [Google Scholar]
- Q. Wang, J.S. Hesthaven and D. Ray, Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem. J. Comput. Phys. 384 (2019) 289–307. [Google Scholar]
- H. Wendland, Scattered data approximation. In Vol. 17 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2005). [Google Scholar]
- T. Wenzel, G. Santin and B. Haasdonk, A novel class of stabilized greedy kernel approximation algorithms: Convergence, stability and uniform point distribution. J. Approx. Theory 262 (2021) 105508. [Google Scholar]
- T. Wenzel, B. Haasdonk, H. Kleikamp, M. Ohlberger and F. Schindler, Application of deep kernel models for certified and adaptive RB-ML-ROM surrogate modeling. In: Lecture Notes in Computer Science. Springer, Nature Switzerland (2024) 117–125. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.