Open Access
Issue
ESAIM: M2AN
Volume 59, Number 1, January-February 2025
Page(s) 265 - 289
DOI https://doi.org/10.1051/m2an/2024071
Published online 08 January 2025
  1. G. Albi and L. Pareschi, Binary interaction algorithms for the simulation of flocking and swarming dynamics. Multiscale Model. Simul. 11 (2013) 1–29. [CrossRef] [MathSciNet] [Google Scholar]
  2. A.L. Bertozzi, J.B. Garnett and T. Laurent, Characterization of radially symmetric finite time blowup in multidimensional aggregation equations. SIAM J. Math. Anal. 44 (2012) 651–681. [Google Scholar]
  3. F. Bolley and C. Villani, Weighted Csiszár–Kullback–Pinsker inequalities and applications to transportation inequalities. Annales de la Faculté des sciences de Toulouse: Mathématiques 14 (2005) 331–352. [Google Scholar]
  4. S. Bubeck, Convex optimization: algorithms and complexity. Found. Trends ® Mach. Learn. 8 (2015) 231–357. [CrossRef] [Google Scholar]
  5. E. Carlen, P. Degond and B. Wennberg, Kinetic limits for pair-interaction driven master equations and biological swarm models. Math. Models Methods Appl. Sci. 23 (2013) 1339–1376. [CrossRef] [MathSciNet] [Google Scholar]
  6. J.A. Carrillo, L. Pareschi and M. Zanella, Particle based gPC methods for mean-field models of swarming with uncertainty. Commun. Comput. Phys. 25 (2019) 508–531. [CrossRef] [MathSciNet] [Google Scholar]
  7. J.A. Carrillo, S. Jin and Y. Tang, Random batch particle methods for the homogeneous Landau equation. Commun. Comput. Phys. 31 (2022) 997–1019. [CrossRef] [MathSciNet] [Google Scholar]
  8. L.-P. Chaintron and A. Diez, Propagation of chaos: a review of models, methods and applications. I. Models and methods. Kinet. Relat. Models 15 (2022) 895–1015. [CrossRef] [MathSciNet] [Google Scholar]
  9. L.-P. Chaintron and A. Diez, Propagation of chaos: a review of models, methods and applications. II. Models and methods. Kinet. Relat. Models 15 (2022) 895–1015. [CrossRef] [MathSciNet] [Google Scholar]
  10. Y.-P. Choi, S.-Y. Ha and S.-B. Yun, Complete synchronization of Kuramoto oscillators with finite inertia. Phys. D: Nonlinear Phenom. 240 (2011) 32–44. [CrossRef] [Google Scholar]
  11. F. Cucker and S. Smale, Emergent behavior in flocks. IEEE Trans. Autom. Control 52 (2007) 852–862. [CrossRef] [Google Scholar]
  12. P. Degond, J.-G. Liu and R.L. Pego, Coagulation–fragmentation model for animal group-size statistics. J. Nonlinear Sci. 27 (2017) 379–424. [Google Scholar]
  13. M.G. Delgadino, R.S. Gvalani, G.A. Pavliotis and S.A. Smith, Phase transitions, logarithmic sobolev inequalities, and uniform-in-time propagation of chaos for weakly interacting diffusions. Commun. Math. Phys. 401 (2023) 275–323. [CrossRef] [Google Scholar]
  14. D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications. Elsevier (2023). [Google Scholar]
  15. F. Golse, On the dynamics of large particle systems in the mean field limit, in Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity. Springer (2016) 1–144. [Google Scholar]
  16. A. Guillin, P. Le Bris and P. Monmarché, Uniform in time propagation of chaos for the 2D vortex model and other singular stochastic systems. J. Eur. Math. Soc. (2024) 1–28. [Google Scholar]
  17. S.-Y. Ha and Z. Li, Complete synchronization of Kuramoto oscillators with hierarchical leadership. Commun. Math. Sci. 12 (2014) 485–508. [CrossRef] [MathSciNet] [Google Scholar]
  18. S.-Y. Ha and J.-G. Liu, A simple proof of the Cucker-Smale flocking dynamics and mean-field limit. Commun. Math. Sci. 7 (2009) 297–325. [CrossRef] [MathSciNet] [Google Scholar]
  19. D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences (2003). [Google Scholar]
  20. P.-E. Jabin and Z. Wang, Mean field limit and propagation of chaos for Vlasov systems with bounded forces. J. Funct. Anal. 271 (2016) 3588–3627. [CrossRef] [MathSciNet] [Google Scholar]
  21. P.-E. Jabin and Z. Wang, Mean field limit for stochastic particle systems, in Active Particles, Volume 1: Advances in Theory, Models, and Applications. Springer (2017) 379–402. [Google Scholar]
  22. P.-E. Jabin and Z. Wang, Quantitative estimates of propagation of chaos for stochastic systems with W−1,∞ kernels. Inventiones mathematicae 214 (2018) 523–591. [CrossRef] [MathSciNet] [Google Scholar]
  23. S. Jin and X. Li, Random batch algorithms for quantum Monte Carlo simulations. Commun. Comput. Phys. 28 (2020) 1907–1936. [CrossRef] [MathSciNet] [Google Scholar]
  24. S. Jin and L. Li, Random batch methods for classical and quantum interacting particle systems and statistical samplings, in Active Particles, Volume 3: Advances in Theory, Models, and Applications. Springer International Publishing, Cham (2021) 153–200. [Google Scholar]
  25. S. Jin and L. Li, On the mean field limit of the random batch method for interacting particle systems, in Science China Mathematics. Springer (2022) 1–34. [Google Scholar]
  26. S. Jin, L. Li and J.-G. Liu, Random batch methods (RBM) for interacting particle systems. J. Comput. Phys. 400 (2020) 108877. [CrossRef] [MathSciNet] [Google Scholar]
  27. S. Jin, L. Li and J.-G. Liu, Convergence of the random batch method for interacting particles with disparate species and weights. SIAM J. Numer. Anal. 59 (2021) 746–768. [CrossRef] [MathSciNet] [Google Scholar]
  28. S. Jin, L. Li, Z. Xu and Y. Zhao, A random batch Ewald method for particle systems with Coulomb interactions. SIAM J. Sci. Comput. 43 (2021) B937–B960. [CrossRef] [Google Scholar]
  29. S. Jin, L. Li, X. Ye and Z. Zhou, Ergodicity and long-time behavior of the random batch method for interacting particle systems. Math. Models Methods Appl. Sci. 33 (2023) 67–102. [CrossRef] [MathSciNet] [Google Scholar]
  30. M. Kac, Foundations of kinetic theory, in Proceedings of The third Berkeley Symposium on Mathematical Statistics and Probability. Vol. 3. University of California Press (1956) 171–197. [Google Scholar]
  31. D. Lacker and L. Le Flem, Sharp uniform-in-time propagation of chaos. Probab. Theory Relat. Fields 187 (2023) 443–480. [CrossRef] [Google Scholar]
  32. L. Li and Y. Wang, A sharp uniform-in-time error estimate for Stochastic Gradient Langevin Dynamics. Preprint arXiv:2207.09304 (2022). [Google Scholar]
  33. L. Li, Z. Xu and Y. Zhao, A random-batch Monte Carlo method for many-body systems with singular kernels. SIAM J. Sci. Comput. 42 (2020) A1486–A1509. [CrossRef] [Google Scholar]
  34. L. Li, J.-G. Liu and Y. Tang, Some random batch particle methods for the Poisson–Nernst–Planck and Poisson–Boltzmann equations. Commun. Comput. Phys. 32 (2022) 41–82. [CrossRef] [MathSciNet] [Google Scholar]
  35. J. Liang, P. Tan, Y. Zhao, L. Li, S. Jin, L. Hong and Z. Xu, Superscalability of the random batch Ewald method. J. Chem. Phys. 156 (2022) 014114. [CrossRef] [PubMed] [Google Scholar]
  36. F. Malrieu, Logarithmic sobolev inequalities for some nonlinear PDE’s. Stoch. Process. App. 95 (2001) 109–132. [CrossRef] [Google Scholar]
  37. H.P. McKean, Propagation of chaos for a class of non-linear parabolic equations, in Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7, Catholic Univ., 1967) (1967) 41–57. [Google Scholar]
  38. S. Motsch and E. Tadmor, Heterophilious dynamics enhances consensus. SIAM Rev. 56 (2014) 577–621. [CrossRef] [MathSciNet] [Google Scholar]
  39. W. Mou, N. Flammarion, M.J. Wainwright and P.L. Bartlett, Improved bounds for discretization of Langevin diffusions: near-optimal rates without convexity. Bernoulli 28 (2022) 1577–1601. [MathSciNet] [Google Scholar]
  40. A. Ogawa, Vorticity and incompressible flow. Cambridge texts in applied mathematics. Appl. Mech. Rev. 55 (2002) B77–B78. [CrossRef] [Google Scholar]
  41. F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173 (2000) 361–400. [CrossRef] [MathSciNet] [Google Scholar]
  42. H. Robbins and S. Monro, A stochastic approximation method. Ann. Math. Stat. 22 (1951) 400–407. [CrossRef] [Google Scholar]
  43. A.J. Stam, Some inequalities satisfied by the quantities of information of Fisher and Shannon. Inf. Control 2 (1959) 101–112. [CrossRef] [Google Scholar]
  44. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75 (1995) 1226. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  45. X. Ye and Z. Zhou, Error analysis of time-discrete random batch method for interacting particle systems and associated mean-field limits. IMA J. Numer. Anal. 44 (2024) 1660–1698. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you