Open Access
Issue |
ESAIM: M2AN
Volume 59, Number 1, January-February 2025
|
|
---|---|---|
Page(s) | 137 - 166 | |
DOI | https://doi.org/10.1051/m2an/2024057 | |
Published online | 08 January 2025 |
- H. Amann, Linear and quasilinear parabolic problems. In Vol. 89 of Monographs in Mathematics. Vol. I. Birkh¨auser Boston Inc., Boston (1995). Abstract linear theory. [Google Scholar]
- B. Ammann, N. Große and V. Nistor, Well-posedness of the Laplacian on manifolds with boundary and bounded geometry. Math. Nachr. 292 (2019) 1213–1237. [CrossRef] [MathSciNet] [Google Scholar]
- I. Babuška, R.B. Kellogg and J. Pitk¨aranta, Direct and inverse error estimates for finite elements with mesh refinements. Numer. Math. 33 (1979) 447–471. [CrossRef] [MathSciNet] [Google Scholar]
- I. Babuška, F. Nobile and R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data. SIAM Rev. 52 (2010) 317–355. [CrossRef] [MathSciNet] [Google Scholar]
- I. Babuska, R. Tempone and G.E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42 (2004) 800–825. [Google Scholar]
- M. Bachmayr, A. Cohen, D. Dũng and C. Schwab, Fully discrete approximation of parametric and stochastic elliptic PDEs. SIAM J. Numer. Anal. 55 (2017) 2151–2186. [Google Scholar]
- M. Bachmayr, A. Cohen and G. Migliorati, Representations of Gaussian random fields and approximation of elliptic PDEs with lognormal coefficients. J. Fourier Anal. Appl. 24 (2018) 621–649. [CrossRef] [MathSciNet] [Google Scholar]
- C. Bacuta, V. Nistor and L. Zikatanov, Improving the rate of convergence of high-order finite elements on polyhedra. II. Mesh refinements and interpolation. Numer. Funct. Anal. Optim. 28 (2007) 775–824. [CrossRef] [MathSciNet] [Google Scholar]
- J. Behrndt and D. Krejcirik, An indefinite Laplacian on a rectangle. Preprint arXiv:1407.7802 (2014). [Google Scholar]
- A.-S. Bonnet-Ben Dhia and K. Ramdani, Mathematical analysis of conducting and superconducting transmission lines. SIAM J. Appl. Math. 60 (2000) 2087–2113. [CrossRef] [MathSciNet] [Google Scholar]
- A.-S. Bonnet-Bendhia, M. Dauge and K. Ramdani, Analyse spectrale et singularités d’un problème de transmission non coercif. C. R. Acad. Sci. Paris Sér. I Math. 328 (1999) 717–720. [CrossRef] [MathSciNet] [Google Scholar]
- A.S. Bonnet-Ben Dhia, P. Ciarlet, Jr. and C.M. Zwölf, Two- and three-field formulations for wave transmission between media with opposite sign dielectric constants. J. Comput. Appl. Math. 204 (2007) 408–417. [CrossRef] [MathSciNet] [Google Scholar]
- A.-S. Bonnet-Ben Dhia, L. Chesnel and P. Ciarlet, Jr., T-coercivity for scalar interface problems between dielectrics and metamaterials. ESAIM:M2AN 46 (2012) 1363–1387. [CrossRef] [EDP Sciences] [Google Scholar]
- A.-S. Bonnet-Ben Dhia, L. Chesnel and P. Ciarlet, Jr., T-coercivity for the Maxwell problem with sign-changing coefficients. Commun. Partial Differ. Equ. 39 (2014) 1007–1031. [CrossRef] [Google Scholar]
- H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, in Universitext. Springer, New York (2011). [CrossRef] [Google Scholar]
- C. Băcut¸ă, H. Li and V. Nistor, Differential operators on domains with conical points: precise uniform regularity estimates. Rev. Roum. Math. Pures Appl. 62 (2017) 383–411. [Google Scholar]
- A. Buffa, M. Costabel and M. Dauge, Anisotropic regularity results for Laplace and Maxwell operators in a polyhedron. C. R. Math. Acad. Sci. Paris 336 (2003) 565–570. [CrossRef] [MathSciNet] [Google Scholar]
- R. Bunoiu, K. Ramdani and C. Timofte, T-coercivity for the asymptotic analysis of scalar problems with sign-changing coefficients in thin periodic domains. Electron. J. Differ. Equ. 2021 (2021) 22. [CrossRef] [Google Scholar]
- C. Cacciapuoti, K. Pankrashkin and A. Posilicano, Self-adjoint indefinite Laplacians. Preprint arXiv:1611.00696v3 (2016). [Google Scholar]
- C. Carvalho and Y. Qiao, Layer potentials C*-algebras of domains with conical points. Cent. Eur. J. Math. 11 (2013) 27–54. [CrossRef] [MathSciNet] [Google Scholar]
- C. Carvalho, R. Côme and Y. Qiao, Gluing action groupoids: Fredholm conditions and layer potentials. Rev. Roum. Math. Pures Appl. 64 (2019) 113–156. [Google Scholar]
- L. Chesnel and P. Ciarlet, Jr., T-coercivity and continuous Galerkin methods: application to transmission problems with sign changing coefficients. Numer. Math. 124 (2013) 1–29. [CrossRef] [MathSciNet] [Google Scholar]
- A. Chkifa, A. Cohen and C. Schwab, Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs. J. Math. Pures Appl. 103 (2015) 400–428. [Google Scholar]
- A. Cohen and G. Migliorati, Near-optimal approximation methods for elliptic PDEs with lognormal coefficients. Math. Comput. 92 (2023) 1665–1691. [CrossRef] [Google Scholar]
- A. Cohen, R. Devore and C. Schwab, Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE’s. Anal. Appl. (Singap.) 9 (2011) 11–47. [CrossRef] [Google Scholar]
- J. Conway, A course in functional analysis, 2nd edition. In Vol. 96 Graduate Texts in Mathematics Springer. New York (1990). [Google Scholar]
- M. Costabel, Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19 (1988) 613–626. [Google Scholar]
- M. Costabel and E. Stephan, A direct boundary integral equation method for transmission problems. J. Math. Anal. Appl. 106 (1985) 367–413. [CrossRef] [MathSciNet] [Google Scholar]
- M. Costabel, M. Dauge and S. Nicaise, Corner singularities and analytic regularity for linear elliptic systems. Part I: smooth domains (2010). Preprint arXiv:hal-00453934v2. [Google Scholar]
- M. Costabel, M. Dauge and S. Nicaise, Analytic regularity for linear elliptic systems in polygons and polyhedra. Math. Models Methods Appl. Sci. 22 (2012) 1250015, 63. [CrossRef] [MathSciNet] [Google Scholar]
- M. Dauge, Elliptic boundary value problems on corner domains. In Vol. 1341 Lecture Notes in Mathematics. Springer-Verlag, Berlin (1988). Smoothness and asymptotics of solutions. [CrossRef] [Google Scholar]
- D. Dũng, V. Nguyen, C. Schwab and J. Zech, Analyticity and sparsity in uncertainty quantification for PDEs with Gaussian random field inputs. Preprint https://arxiv.org/abs/2201.01912 (2022). [Google Scholar]
- L. Evans, Partial differential equations, 2nd edition. In Vol. 19 Graduate Studies in Mathematics. American Mathematical Society, Providence (2010). [CrossRef] [Google Scholar]
- N. Große and C. Schneider, Sobolev spaces on Riemannian manifolds with bounded geometry: general coordinates and traces. Math. Nachr. 286 (2013) 1586–1613. [CrossRef] [MathSciNet] [Google Scholar]
- B. Guo and I. Babuška, Regularity of the solutions for elliptic problems on nonsmooth domains in R3. I. Countably normed spaces on polyhedral domains. Proc. R. Soc. Edinb. Sect. A 127 (1997) 77–126. [CrossRef] [MathSciNet] [Google Scholar]
- E. Hebey and F. Robert, Sobolev spaces on manifolds. In: Handbook of Global Analysis. Elsevier Sci. B. V., Amsterdam (2008) 375–415. [CrossRef] [Google Scholar]
- L. Herrmann, M. Keller and C. Schwab, Quasi-Monte Carlo Bayesian estimation under Besov priors in elliptic inverse problems. Math. Comput. 90 (2021) 1831–1860. [CrossRef] [Google Scholar]
- G.C. Hsiao and W.L. Wendland, Boundary Integral Equations, 2nd edition. Springer Nature Switzerland, Cham (2021). [CrossRef] [Google Scholar]
- K. Klioba and C. Seifert, Approximation of random evolution equations. Preprint arXiv:2404.07660 [math.FA] (2024). [Google Scholar]
- M. Kohr, S. Labrunie, H. Mohsen and V. Nistor, Polynomial estimates for solutions of parametric elliptic equations on complete manifolds. Stud. Univ. Babes-Bolyai Math. 67 (2022) 369–382. [CrossRef] [MathSciNet] [Google Scholar]
- O.P. Le Ma^ıtre and O. Knio, Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics. Springer, Dordrecht (2010). [CrossRef] [Google Scholar]
- H. Li, A. Mazzucato and V. Nistor, Analysis of the finite element method for transmission/mixed boundary value problems on general polygonal domains. Electron. Trans. Numer. Anal. 37 (2010) 41–69. [MathSciNet] [Google Scholar]
- H. Li, V. Nistor and Y. Qiao Uniform shift estimates for transmission problems and optimal rates of convergence for the parametric finite element method, in Numerical Analysis and Its Applications. In Vol. 8236 of Lecture Notes in Compututer Science. Springer, Heidelberg (2013) 12–23. [CrossRef] [Google Scholar]
- J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181. Springer-Verlag, New York-Heidelberg (1972). [Google Scholar]
- A. Mazzucato, V. Nistor and Q. Qu, A nonconforming generalized finite element method for transmission problems. SIAM J. Numer. Anal. 51 (2013) 555–576. [CrossRef] [MathSciNet] [Google Scholar]
- M. Mitrea and M. Taylor, Boundary layer methods for Lipschitz domains in Riemannian manifolds. J. Funct. Anal. 163 (1999) 181–251. [CrossRef] [MathSciNet] [Google Scholar]
- H. Mohsen, Estimations uniformes pour des problèmes de transmission à changement de signe: Liens avec les triplets de frontière et la quantification de l’incertitude, Ph.D. thesis, Lorraine University (2022). [Google Scholar]
- H. Mohsen, S. Labrunie and V. Nistor, Estimations polynomiales pour les solutions des problèmes de transmission sur cylindres. Preprint, to appear in Tunisian J. Math. (2022). [Google Scholar]
- S. Nicaise, Polygonal Interface Problems. Peter Lang, Frankfurt/Main (1993). [Google Scholar]
- S. Nicaise and A.-M. S¨andig, General interface problems. I. Math. Methods Appl. Sci. 17 (1994) 395–429. [CrossRef] [MathSciNet] [Google Scholar]
- S. Nicaise and A.-M. S¨andig, General interface problems. II. Math. Methods Appl. Sci. 17 (1994) 431–450. [CrossRef] [Google Scholar]
- H.-M. Nguyen, Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients. J. Math. Pures Appl. 106 (2016) 342–374. [CrossRef] [MathSciNet] [Google Scholar]
- H.-M. Nguyen and S. Sil, Limiting absorption principle and well-posedness for the time-harmonic Maxwell equations with anisotropic sign-changing coefficients. Commun. Math. Phys. 379 (2020) 145–176. [CrossRef] [Google Scholar]
- K. Pankrashkin, On self-adjoint realizations of sign-indefinite Laplacians. Rev. Roum. Math. Pures Appl. 64 (2019) 345–372. [Google Scholar]
- Y.A. Roĭtberg and Z.G. Sheftel, Elliptic equations with discontinuous coefficients. Sov. Math. Dokl. 146 (1962) 1491–1494. [Google Scholar]
- Y.A. Roĭtberg and Z.G. Sheftel, General boundary-value problems for elliptic equations with discontinuous coefficients. Sov. Math. Dokl. 4 (1963) 231–234. [Google Scholar]
- T.J. Sullivan, Introduction to Uncertainty Quantification, Vol. 63. Springer, Cham (2015). [CrossRef] [Google Scholar]
- M.E. Taylor, Partial differential equations. I. In Vol. 115 of Applied Mathematical Sciences. Springer-Verlag, New York (1996). Basic theory. [Google Scholar]
- M. Taylor, Partial differential equations II. Qualitative studies of linear equations, 2nd edition. In Vol. 116 of Applied Mathematical Sciences. Springer, New York (2011). [Google Scholar]
- H. Triebel, Characterizations of function spaces on a complete Riemannian manifold with bounded geometry. Math. Nachr. 130 (1987) 321–346. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.