Open Access
Issue |
ESAIM: M2AN
Volume 59, Number 1, January-February 2025
|
|
---|---|---|
Page(s) | 449 - 485 | |
DOI | https://doi.org/10.1051/m2an/2024073 | |
Published online | 08 January 2025 |
- G.D. Akrivis, V.A. Dougalis and O.A. Karakashian, On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation. Numer. Math. 59 (1991) 31–53. [Google Scholar]
- C. Atkinson and C.W. Jones, Similarity solutions in some non-linear diffusion problems and in boundary-layer flow of a pseudo plastic fluid. Quart. J. Mech. Appl. Math. 27 (1974) 193–211. [Google Scholar]
- J.W. Barrett and W.B. Liu, Finite element approximation of the parabolic p-Laplacian. SIAM J. Numer. Anal. 31 (1994) 413–428. [Google Scholar]
- L. Berselli and M. Růžička, Space-time discretization for nonlinear parabolic systems with p-structure. IMA J. Numer. Anal. 42 (2021) 260–299. [Google Scholar]
- L. Berselli, L. Diening and M. Růžička, Optimal error estimate for semi-implicit space-time dicretization for the equations describing incompressible generalized Newtonian fluids. IMA J. Numer. Anal. 55 (2015) 680–697. [Google Scholar]
- M. Boman, Estimates for the L2-projection onto continuous finite element spaces in a weighted Lp-norm. BIT Numer. Math. 46 (2006) 249–260. [CrossRef] [Google Scholar]
- D. Breit, L. Diening, J. Storn and J. Wichmann, The parabolic p-Laplacian with fractional differentiability. IMA J. Numer. Anal. 41 (2021) 2110–2138. [Google Scholar]
- S. Brenner and R. Scott, The mathematical theory of finite element methods, in Texts in Applied Mathematics. Vol. 15. Springer-Verlag, New York (1994). [Google Scholar]
- K. Chrysafinos and N.J. Walkington, Error estimates for the discontinuous Galerkin methods for parabolic equations. SIAM J. Numer. Anal. 44 (2006) 349–366. [Google Scholar]
- K. Chrysafinos and N.J. Walkington, Discontinuous Galerkin approximations of the Stokes and Navier–Stokes equations. Math. Comput. 79 (2010) 2135–2167. [Google Scholar]
- M. Crouzeix and V. Thomée, The stability in Lp and W1p of the L2-projection onto finite element function spaces. Math. Comput. 48 (1987) 521–532. [Google Scholar]
- L. Diening, C. Ebmeyer and M. Růžička, Optimal convergence for the implicit space-time discretization of parabolic systems with p-structure. SIAM J. Numer. Anal. 42 (2007) 457–472. [Google Scholar]
- L. Diening, C. Kreuzer and E. Süli, Finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology. SIAM J. Numer. Anal. 51 (2013) 984–1015. [Google Scholar]
- L. Diening, J. Storn and T. Tscherpel, On the Sobolev and Lp-stability of the L2-projection. SIAM J. Numer. Anal. 59 (2021) 2571–2607. [Google Scholar]
- S. Eckstein and M. Růžička, On the full space-time discretization of the generalized Navier–Stokes equations: the Dirichlet case. SIAM J. Numer. Anal. 56 (2018) 2234–2261. [Google Scholar]
- E. Emmrich, Time discretisation of monotone nonlinear evolution problems by the discontinuous Galerkin method. BIT Numer. Math. 51 (2011) 581–607. [CrossRef] [Google Scholar]
- E. Emmrich, Variable time-step θ-scheme for nonlinear evolution equations governed by a monotone operator. Calcolo 46 (2009) 187–210. [CrossRef] [MathSciNet] [Google Scholar]
- E. Emmrich and M. Thalhammer, Stiffly accurate Runge–Kutta methods for nonlinear evolution equations governed by a monotone operator. Math. Comput. 79 (2010) 785–806. [Google Scholar]
- E. Emmrich and A. Wróblewska-Kamińska, Convergence of a full discretization of quasi-linear parabolic equations in isotropic and anisotropic Orlicz spaces. SIAM J. Numer. Anal. 51 (2013) 1163–1184. [Google Scholar]
- L.C. Evans, Partial Differential Equations. American Mathematical Society, Rhode Island (2010). [Google Scholar]
- E. Hansen, Galerkin/Runge–Kutta discretizations of nonlinear parabolic equations. J. Comput. Appl. Math. 205 (2007) 882–890. [Google Scholar]
- S. Ko, P. Pustějovská and E. Süli, Finite element approximation of an incompressible chemically reacting non-Newtonian fluid. ESAIM: M2AN 52 (2018) 509–541. [Google Scholar]
- C. Kreuzer, Reliable and efficient a posteriori error estimates for finite element approximations of the parabolic p-Laplacian. Calcolo 50 (2013) 50–79. [CrossRef] [MathSciNet] [Google Scholar]
- D. Kröner, M. Růžička and I. Toulopoulos, Local discontinuous Galerkin numerical solutions of non-Newtonian incompressible flows modeled by p-Navier–Stokes equations. J. Comput. Phys. 270 (2014) 182–202. [Google Scholar]
- D. Kröner, M. Růžička and I. Toulopoulos, Numerical solutions os systems with (p, δ)-structure using local discontinuous finite element methods. Int. J. Numer. Fluids 76 (2014) 855–874. [Google Scholar]
- W. Liu and N. Yan, Quasi-norm a priori and a posteriori error estimates for the nonconforming approximation of p-Laplacian. Numer. Math. 84 (2001) 341–378. [Google Scholar]
- W. Liu and N. Yan, Quasi-norm local error estimators for p-Laplacian. SIAM J. Numer. Anal. 39 (2001) 100–127. [Google Scholar]
- J. Málek and K.R. Rajagopal, Mathematical issues concerning the Navier–Stokes equations and some of its generalizations, in Evolution Equations. Vol II of Hanb. Differ. Equ. Elsevier/North-Holland, Amsterdam (2005) 371–459. [Google Scholar]
- J.R. Philip, n-Diffusion. Aust. J. Phys. 14 (1961) 1–13. [CrossRef] [Google Scholar]
- T. Roubiček, Nonlinear Partial Differential Equations with Applications. Springer Basel (2013). [Google Scholar]
- M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Math. 1748. Springer, Berlin (2000). [Google Scholar]
- J. Schöberl, A. Arnold, J. Erb, J. Melenk and T.P. Wihler, C++ 11 implementation of finite elements in NGSolve. Technical Report, Institute for Analysis and Scientific Computing, Vienna University of Technology, ASC Report 30/2014 (2014). [Google Scholar]
- V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (2006). [Google Scholar]
- I. Toulopoulos, An interior penalty discontinuous Galerkin finite element method for quasilinear parabolic problems. Finite Elements in Analysis and Design 95 (2015) 42–50. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.