Open Access
Issue
ESAIM: M2AN
Volume 59, Number 1, January-February 2025
Page(s) 487 - 518
DOI https://doi.org/10.1051/m2an/2024082
Published online 08 January 2025
  1. A. Azizi and P. Ghafoorpoor Yazdi, White Noise: Applications and Mathematical Modeling. Springer Singapore (2019) 25–36. [Google Scholar]
  2. J. Badwaik, C. Klingenberg, N.H. Risebro and A.M. Ruf, Multilevel Monte Carlo finite volume methods for random conservation laws with discontinuous flux. ESAIM: Math. Modell. Numer. Anal. 55 (2021) 1039–1065. [Google Scholar]
  3. S. Blandin and P. Goatin, Well-posedness of a conservation law with non-local flux arising in traffic flow modeling. Numer. Math. 132 (2016) 217–241. [Google Scholar]
  4. A. Bressan and W. Shen, On traffic flow with nonlocal flux: a relaxation representation. Arch. Ration. Mech. Anal. 237 (2020) 1213–1236. [CrossRef] [MathSciNet] [Google Scholar]
  5. F.A. Chiarello and P. Goatin, Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel. ESAIM: Math. Modell. Numer. Anal. 52 (2018) 163–180. [Google Scholar]
  6. F.A. Chiarello, J. Friedrich, P. Goatin and S. Göttlich, Micro-macro limit of a nonlocal generalized Aw-Rascle type model. SIAM J. Appl. Math. 80 (2020) 1841–1861. [Google Scholar]
  7. G.M. Coclite, K.H. Karlsen and N.H. Risebro, A nonlocal lagrangian traffic flow model and the zero-filter limit. Z. Angew. Math. Phys. 75 (2024) 1–31. [Google Scholar]
  8. R.M. Colombo, M. Garavello and M. Lécureux-Mercier, A class of nonlocal models for pedestrian traffic. Math. Models Methods Appl. Sci. 22 (2012) 1150023. [CrossRef] [MathSciNet] [Google Scholar]
  9. G. Crippa, E. Marconi, L.V. Spinolo and M. Colombo, Local limit of nonlocal traffic models: convergence results and total variation blow-up. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 38 (2021) 1653–1666. [CrossRef] [MathSciNet] [Google Scholar]
  10. R. Eymard, T. Gallouët and R. Herbin, Finite volume methods. Handb. Numer. Anal. 7 (2000) 713–1018. [Google Scholar]
  11. J. Friedrich, Traffic flow models with nonlocal velocity. Ph.D. thesis, University of Mannheim (2021). [Google Scholar]
  12. J. Friedrich, O. Kolb and S. Göttlich, A Godunov type scheme for a class of LWR traffic flow models with non-local flux. Netw. Heterogeneous Media 13 (2018) 531–547. [Google Scholar]
  13. J. Friedrich, S. Göttlich and M. Osztfalk, Network models for nonlocal traffic flow. ESAIM: Math. Modell. Numer. Anal. 56 (2022) 213–235. [Google Scholar]
  14. M. Garavello and B. Piccoli, Traffic Flow on Networks. Vol. 1 of AIMS Series on Applied Mathematics. American Institute of Mathematical Sciences (AIMS), Springfield, MO (2006). [Google Scholar]
  15. M. Garavello, K. Han and B. Piccoli, Models for Vehicular Traffic on Networks. Vol. 9 of AIMS Series on Applied Mathematics. American Institute of Mathematical Sciences (AIMS), Springfield, MO (2016). [Google Scholar]
  16. J. Garnier, G. Papanicolaou and T.-W. Yang, Anomalous shock displacement probabilities for a perturbed scalar conservation law. Multiscale Model. Simul. 11 (2013) 1000–1032. [Google Scholar]
  17. H. Holden and N.H. Risebro, Front Tracking for Hyperbolic Conservation Laws. Springer Berlin Heidelberg (2015). [Google Scholar]
  18. K. Huang and Q. Du, Stability of a nonlocal traffic flow model for connected vehicles. SIAM J. Appl. Math. 82 (2022) 221–243. [CrossRef] [MathSciNet] [Google Scholar]
  19. S.E. Jabari and H.X. Liu, A stochastic model of traffic flow: theoretical foundations. Transp. Res. Part B: Methodol. 46 (2012) 156–174. [Google Scholar]
  20. A. Keimer, L. Pflug and M. Spinola, Nonlocal scalar conservation laws on bounded domains and applications in traffic flow. SIAM J. Math. Anal. 50 (2018) 6271–6306. [CrossRef] [MathSciNet] [Google Scholar]
  21. H. Korezlioglu, White noise theory of prediction, filtering and smoothing. Stoch. Stoch. Rep. 40 (1992) 117–123. [Google Scholar]
  22. S.N. Kružkov, First order quasilinear equations in serveral independent variables. Math. USSR-Sbornik 10 (1970) 217–243. [Google Scholar]
  23. J. Li, Q.-Y. Chen, H. Wang and D. Ni, Analysis of LWR model with fundamental diagram subject to uncertainties. Transportmetrica 8 (2012) 387–405. [Google Scholar]
  24. M.J. Lighthill and G.B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. R. Soc. London Ser. A 229 (1955) 317–345. [Google Scholar]
  25. S. Mishra, N.H. Risebro, C. Schwab and S. Tokareva, Numerical solution of scalar conservation laws with random flux functions. SIAM/ASA J. Uncertainty Quantif. 4 (2016) 552–591. [Google Scholar]
  26. P.I. Richards, Shock waves on the highway. Oper. Res. 4 (1956) 42–51. [Google Scholar]
  27. N.H. Risebro, C. Schwab and F. Weber, Multilevel Monte Carlo front-tracking for random scalar conservation laws. BIT Numer. Math. 56 (2015) 263–292. [Google Scholar]
  28. A. Sopasakis and M.A. Katsoulakis, Stochastic modeling and simulation of traffic flow: asymmetric single exclusion process with Arrhenius look-ahead dynamics. SIAM J. Appl. Math. 66 (2006) 921–944. [Google Scholar]
  29. H.Y. Teh, A.W. Kempa-Liehr and K.I.-K. Wang, Sensor data quality: a systematic review. J. Big Data 7 (2020) 11. [Google Scholar]
  30. H. Wang, D. Ni, Q.-Y. Chen and J. Li, Stochastic modeling of the equilibrium speed-density relationship. J. Adv. Transp. 47 (2011) 126–150. [Google Scholar]
  31. J. Wang, P. Dong, Z. Jing and J. Cheng, Consensus-based filter for distributed sensor networks with colored measurement noise. Sensors 18 (2018) 3678. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you