Open Access
Issue |
ESAIM: M2AN
Volume 59, Number 1, January-February 2025
|
|
---|---|---|
Page(s) | 201 - 230 | |
DOI | https://doi.org/10.1051/m2an/2024078 | |
Published online | 08 January 2025 |
- S. Andrieux and A.B. Abda, Identification of planar cracks by complete overdetermined data: inversion formulae. Inverse Prob. 12 (1996) 553. [CrossRef] [Google Scholar]
- K.E. Atkinson and I.H. Sloan, The numerical solution of first-kind logarithmic-kernel integral equations on smooth open arcs. Math. Comput. 56 (1991) 119–139. [Google Scholar]
- P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova and P. Wojtaszczyk, Convergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 43 (2011) 1457–1472. [Google Scholar]
- O.P. Bruno, L. Xu and T. Yin, Weighted integral solvers for elastic scattering by open arcs in two dimensions. Int. J. Numer. Methods Eng. 122 (2021) 2733–2750. [CrossRef] [Google Scholar]
- A. Buffa, Y. Maday, A.T. Patera, C. Prud’homme and G. Turinici, A priori convergence of the greedy algorithm for the parametrized reduced basis method. ESAIM:M2AN 46 (2012) 595–603. [CrossRef] [EDP Sciences] [Google Scholar]
- T. Bui-Thanh, K. Willcox and O. Ghattas, Model reduction for large-scale systems with high-dimensional parametric input space. SIAM J. Sci. Comput. 30 (2008) 3270–3288. [CrossRef] [MathSciNet] [Google Scholar]
- R. Chapko, R. Kress and L. Mönch, On the numerical solution of a hypersingular integral equation for elastic scattering from a planar crack. IMA J. Numer. Anal. 20 (2000) 601–619. [CrossRef] [MathSciNet] [Google Scholar]
- P. Chen and C. Schwab, Sparse-grid, reduced-basis Bayesian inversion. Comput. Methods Appl. Mech. Eng. 297 (2015) 84–115. [CrossRef] [Google Scholar]
- P. Chen and C. Schwab, Adaptive sparse grid model order reduction for fast Bayesian estimation and inversion, in Sparse Grids and Applications-Stuttgart 2014. Springer (2016) 1–27. [Google Scholar]
- P. Chen and C. Schwab, Sparse-grid, reduced-basis Bayesian inversion: nonaffine-parametric nonlinear equations. J. Comput. Phys. 316 (2016) 470–503. [CrossRef] [MathSciNet] [Google Scholar]
- A. Chkifa, A. Cohen and C. Schwab, Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs. J. Math. Pures Appl. 103 (2015) 400–428. [Google Scholar]
- A. Cohen and R. DeVore, Approximation of high-dimensional parametric PDEs. Acta Numer. 24 (2015) 1–159. [Google Scholar]
- A. Cohen and R. DeVore, Kolmogorov widths under holomorphic mappings. IMA J. Numer. Anal. 36 (2016) 1–12. [Google Scholar]
- D.L. Colton, R. Kress and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory. Vol. 93. Springer (1998). [CrossRef] [Google Scholar]
- M. Dalla Riva, J. Morais and P. Musolino, A family of fundamental solutions of elliptic partial differential operators with quaternion constant coefficients. Math. Methods Appl. Sci. 36 (2013) 1569–1582. [CrossRef] [MathSciNet] [Google Scholar]
- M. Dalla Riva, P. Luzzini and P. Musolino, Multi-parameter analysis of the obstacle scattering problem. Inverse Prob. 38 (2022) 055004. [CrossRef] [Google Scholar]
- M. Dalla Riva, P. Luzzini and P. Musolino, Shape analyticity and singular perturbations for layer potential operators. ESAIM:M2AN 56 (2022) 1889–1910. [CrossRef] [EDP Sciences] [Google Scholar]
- R. DeVore, G. Petrova and P. Wojtaszczyk, Greedy algorithms for reduced bases in Banach spaces. Constr. Approx. 37 (2013) 455–466. [Google Scholar]
- J. Dick, F.Y. Kuo, Q.T. Le Gia, D. Nuyens and C. Schwab, Higher order QMC Petrov–Galerkin discretization for affine parametric operator equations with random field inputs. SIAM J. Numer. Anal. 52 (2014) 2676–2702. [CrossRef] [MathSciNet] [Google Scholar]
- J. Dick, Q.T. Le Gia and C. Schwab, Higher order quasi–Monte Carlo integration for holomorphic, parametric operator equations. SIAM/ASA J. Uncertain. Quantif. 4 (2016) 48–79. [CrossRef] [MathSciNet] [Google Scholar]
- J. Dick, R.N. Gantner, Q.T.L. Gia and C. Schwab, Higher order quasi-Monte Carlo integration for Bayesian estimation. Comput. Math. Appl. 77 (2019) 144–172. [CrossRef] [MathSciNet] [Google Scholar]
- J. Dölz and F. Henríquez, Parametric shape holomorphy of boundary integral operators with applications. SIAM J. Math. 56 (2024) 6731–6767. [CrossRef] [MathSciNet] [Google Scholar]
- M. Ganesh, J.S. Hesthaven and B. Stamm, A reduced basis method for electromagnetic scattering by multiple particles in three dimensions. J. Comput. Phys. 231 (2012) 7756–7779. [CrossRef] [MathSciNet] [Google Scholar]
- J.H. Halton, On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer. Math. 2 (1960) 84–90. [CrossRef] [MathSciNet] [Google Scholar]
- F. Henriquez, Shape uncertainty quantification in acoustic scattering. Ph.D. thesis, ETH Zurich (2021). [Google Scholar]
- F. Henríquez and C. Schwab, Shape holomorphy of the Calderón projector for the Laplacian in R2. Integral Equ. Oper. Theory 93 (2021) 43. [CrossRef] [Google Scholar]
- J.S. Hesthaven and S. Ubbiali, Non-intrusive reduced order modeling of nonlinear problems using neural networks. J. Comput. Phys. 363 (2018) 55–78. [CrossRef] [MathSciNet] [Google Scholar]
- J.S. Hesthaven, B. Stamm and S. Zhang, Efficient greedy algorithms for high-dimensional parameter spaces with applications to empirical interpolation and reduced basis methods. ESAIM:M2AN 48 (2014) 259–283. [CrossRef] [EDP Sciences] [Google Scholar]
- J.S. Hesthaven, G. Rozza and B. Stamm, Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Vol. 590. Springer (2016). [Google Scholar]
- C. Jerez-Hanckes and J. Pinto, High-order Galerkin method for Helmholtz and Laplace problems on multiple open arcs. ESAIM:M2AN 54 (2020) 1975–2009. [CrossRef] [EDP Sciences] [Google Scholar]
- C. Jerez-Hanckes, J. Pinto and T. Yin, Spectral galerkin method for solving elastic wave scattering problems with multiple open arcs. Commun. Math. Sci. 22 (2024) 1839–1862. [CrossRef] [MathSciNet] [Google Scholar]
- R. Kress, Inverse elastic scattering from a crack. Inverse Prob. 12 (1996) 667. [CrossRef] [Google Scholar]
- Y. Liang, H. Lee, S. Lim, W. Lin, K. Lee and C. Wu, Proper orthogonal decomposition and its applications – Part I: theory. J. Sound Vib. 252 (2002) 527–544. [CrossRef] [Google Scholar]
- Y. Maday, A.T. Patera and G. Turinici, A priori convergence theory for reduced-basis approximations of single-parameter elliptic partial differential equations. J. Sci. Comput. 17 (2002) 437–446. [Google Scholar]
- W. McLean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press (2000). [Google Scholar]
- A. Moiola, R. Hiptmair and I. Perugia, Plane wave approximation of homogeneous helmholtz solutions. Z. Angew. Math. Phys. 62 (2011) 809–837. [CrossRef] [MathSciNet] [Google Scholar]
- J. Pinto, F. Henríquez and C. Jerez-Hanckes, Shape holomorphy of boundary integral operators on multiple open arcs. J. Fourier Anal. Appl. 30 (2024) 14. [Google Scholar]
- C. Prud’Homme, D.V. Rovas, K. Veroy, L. Machiels, Y. Maday, A.T. Patera and G. Turinici, Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods. J. Fluids Eng. 124 (2002) 70–80. [CrossRef] [Google Scholar]
- A. Quarteroni, A. Manzoni and F. Negri, Reduced Basis Methods for Partial Differential Equations: An Introduction. Vol. 92. Springer (2015). [Google Scholar]
- G. Rozza, Fundamentals of reduced basis method for problems governed by parametrized PDEs and applications, in Separated Representations and PGD-Based Model Reduction: Fundamentals and Applications. Springer (2014) 153–227. [Google Scholar]
- S.A. Sauter and C. Schwab, Boundary Element Methods. Vol. 39 of Springer Series in Computational Mathematics (2011). [CrossRef] [Google Scholar]
- C. Schillings and C. Schwab, Sparse, adaptive Smolyak quadratures for Bayesian inverse problems. Inverse Prob. 29 (2013) 065011. [CrossRef] [Google Scholar]
- E.P. Stephan and W.L. Wendland, An augmented Galerkin procedure for the boundary integral method applied to two-dimensional screen and crack problems. Appl. Anal. 18 (1984) 183–219. [Google Scholar]
- J. Zech and C. Schwab, Convergence rates of high dimensional Smolyak quadrature. ESAIM:M2AN 54 (2020) 1259–1307. [CrossRef] [EDP Sciences] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.