Open Access
Issue
ESAIM: M2AN
Volume 59, Number 1, January-February 2025
Page(s) 231 - 264
DOI https://doi.org/10.1051/m2an/2024069
Published online 08 January 2025
  1. R. Adams, Sobolev Spaces. Pure and Applied Mathematics. Vol. 65. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London (1975). [Google Scholar]
  2. M. Arioli and D. Loghin, Discrete interpolation norms with applications. SIAM J. Numer. Anal. 47 (2009) 2924–2951. [Google Scholar]
  3. M. Aurada, M. Feischl, T. Führer, M. Karkulik, J.M. Melenk and D. Praetorius, Local inverse estimates for non-local boundary integral operators. Math. Comput. 86 (2017) 2651–2686. [Google Scholar]
  4. I. Babuška, A. Craig, J. Mandel and J. Pitk¨aranta, Efficient preconditioning for the p-version finite element method in two dimensions. SIAM J. Numer. Anal. 28 (1991) 624–661. [Google Scholar]
  5. R.E. Bank and H. Yserentant, On the H1-stability of the L2-projection onto finite element spaces. Numer. Math. 126 (2014) 361–381. [Google Scholar]
  6. F. Ben Belgacem, Polynomial extensions of compatible polynomial traces in three dimensions. Comput. Methods Appl. Mech. Eng. 116 (1994) 235–241. [CrossRef] [Google Scholar]
  7. J. Bergh and J. Löfström, Interpolation Spaces: An Introduction. Grundlehren der Mathematischen Wissenschaften, No. 223. Springer-Verlag, Berlin-New York (1976). [Google Scholar]
  8. C. Bernardi and Y. Maday, Spectral methods, in Handbook of Numerical Analysis, edited by P. Ciarlet and J. Lions. Vol. 5. North Holland, Amsterdam (1997). [Google Scholar]
  9. C. Bernardi and Y. Maday, Uniform inf-sup conditions for the spectral discretization of the Stokes problem. Math. Models Methods Appl. Sci. 9 (1999) 395–414. [Google Scholar]
  10. C. Bernardi, M. Dauge and Y. Maday, Relèvements de traces préservant les polynômes. C. R. Acad. Sci. Paris Sér. I Math. 315 (1992) 333–338. [MathSciNet] [Google Scholar]
  11. C. Bernardi, M. Dauge and Y. Maday, Polynomials in the Sobolev world (version 2). Technical Report 14, IRMAR (2007). [Google Scholar]
  12. C. Bernardi, M. Dauge and Y. Maday, The lifting of polynomial traces revisited. Math. Comput. 79 (2010) 47–69. [Google Scholar]
  13. D. Braess, V. Pillwein and J. Schöberl, Equilibrated residual error estimates are p-robust. Comput. Methods Appl. Mech. Eng. 198 (2009) 1189–1197. [CrossRef] [Google Scholar]
  14. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Vol. 15 of Texts in Applied Mathematics, 3rd edition. Springer, New York (2008). [Google Scholar]
  15. V.I. Burenkov, Sobolev Spaces on Domains. Vol. 137 of Teubner-Texte zur Mathematik [Teubner Texts in Mathematics]. B.G. Teubner Verlagsgesellschaft mbH, Stuttgart (1998). [Google Scholar]
  16. L. Diening, J. Storn and T. Tscherpel, On the Sobolev and Lp-stability of the L2-projection. SIAM J. Numer. Anal. 59 (2021) 2571–2607. [Google Scholar]
  17. T. Führer, J.M. Melenk, D. Praetorius and A. Rieder, Optimal additive Schwarz methods for the hp-BEM: the hypersingular integral operator in 3D on locally refined meshes. Comput. Math. Appl. 70 (2015) 1583–1605. [CrossRef] [MathSciNet] [Google Scholar]
  18. E. Gagliardo, Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili. Rend. Sem. Mat. Univ. Padova 27 (1957) 284–305. [Google Scholar]
  19. E.H. Georgoulis, Inverse-type estimates on hp-finite element spaces and applications. Math. Comput. 77 (2008) 201–219. [Google Scholar]
  20. I.G. Graham, W. Hackbusch and S.A. Sauter, Finite elements on degenerate meshes: inverse-type inequalities and applications. IMA J. Numer. Anal. 25 (2005) 379–407. [Google Scholar]
  21. P. Grisvard, Elliptic Problems in Nonsmooth Domains. Vol. 24 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston, MA (1985). [Google Scholar]
  22. M. Karkulik, J.M. Melenk and A. Rieder, Stable decompositions of hp-BEM spaces and an optimal Schwarz pre-conditioner for the hypersingular integral operator in 3D. ESAIM Math. Model. Numer. Anal. 54 (2020) 145–180. [Google Scholar]
  23. Y. Maday, Relèvements de traces polynomiales et interpolations hilbertiennes entre espaces de polynômes. C. R. Acad. Sci. Paris Sér. I Math. 309 (1989) 463–468. [MathSciNet] [Google Scholar]
  24. W. McLean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000). [Google Scholar]
  25. J.M. Melenk and A. Rieder, hp-FEM for the fractional heat equation. IMA J. Numer. Anal. 41 (2021) 412–454. [Google Scholar]
  26. R. Muñoz Sola, Polynomial liftings on a tetrahedron and applications to the h-p version of the finite element method in three dimensions. SIAM J. Numer. Anal. 34 (1997) 282–314. [Google Scholar]
  27. D. Schötzau and C. Schwab, hp-discontinuous Galerkin time-stepping for parabolic problems. C. R. Acad. Sci. Paris Sér. I Math. 333 (2001) 1121–1126. [CrossRef] [MathSciNet] [Google Scholar]
  28. C. Schwab, Numerical mathematics and scientific computation, in p- and hp-Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics. The Clarendon Press, Oxford University Press, New York (1998). [Google Scholar]
  29. L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. [CrossRef] [Google Scholar]
  30. E.M. Stein, Singular Integrals and Differentiability Properties of Functions. Vol. 30 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ (1970). [Google Scholar]
  31. L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces. Vol. 3 of Lecture Notes of the Unione Matematica Italiana. Springer, Berlin; UMI, Bologna (2007). [Google Scholar]
  32. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Vol. 25 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1997). [Google Scholar]
  33. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, 2nd edition. Johann Ambrosius Barth, Heidelberg (1995). [Google Scholar]
  34. A. Zygmund, Trigonometric Series. Vol. I, II. With a foreword by Robert A. Fefferman, 3rd edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge (2002). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you