Open Access
Issue
ESAIM: M2AN
Volume 59, Number 1, January-February 2025
Page(s) 363 - 387
DOI https://doi.org/10.1051/m2an/2024081
Published online 08 January 2025
  1. C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21 (1998) 823–864. [Google Scholar]
  2. P.F. Antonietti, L. Mascotto and M. Verani, A multigrid algorithm for the p-version of the virtual element method. ESAIM: Math. Modell. Numer. Anal. 52 (2018) 337–364. [CrossRef] [EDP Sciences] [Google Scholar]
  3. D.N. Arnold, Finite Element Exterior Calculus. CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (2018). [Google Scholar]
  4. L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. [CrossRef] [MathSciNet] [Google Scholar]
  5. L. Beirão da Veiga, F. Brezzi, L.D. Marini and A. Russo, The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24 (2014) 1541–1573. [Google Scholar]
  6. S. Bertoluzza, M. Pennacchio and D. Prada, BDDC and FETI-DP for the virtual element method. Calcolo 54 (2017) 1565–1593. [CrossRef] [MathSciNet] [Google Scholar]
  7. W. Boon and E. Nilsson, VirtuE-library. https://github.com/WiAErDS/VirtuE (2024). [Google Scholar]
  8. S.C. Brenner, Q. Guan and L.-Y. Sung, Some estimates for virtual element methods. Comput. Methods Appl. Math. 17 (2017) 553–574. [Google Scholar]
  9. F. Brezzi, R.S. Falk and L.D. Marini, Basic principles of mixed virtual element methods. ESAIM: Math. Modell. Numer. Anal. 48 (2014) 1227–1240. [CrossRef] [EDP Sciences] [Google Scholar]
  10. A. Budisa, W.M. Boon and X. Hu, Mixed-dimensional auxiliary space preconditioners. SIAM J. Sci. Comput. 42 (2020) A3367–A3396. [CrossRef] [Google Scholar]
  11. J.G. Calvo, On the approximation of a virtual coarse space for domain decomposition methods in two dimensions. Math. Models Methods Appl. Sci. 28 (2018) 1267–1289. [CrossRef] [MathSciNet] [Google Scholar]
  12. A. Cangiani, E.H. Georgoulis, T. Pryer and O.J. Sutton, A posteriori error estimates for the virtual element method. Numer. Math. 137 (2017) 857–893. [Google Scholar]
  13. L. Chen and J. Huang, Some error analysis on virtual element methods. Calcolo 55 (2018) 1–23. [CrossRef] [MathSciNet] [Google Scholar]
  14. L. da Veiga and L Mascotto, Interpolation and stability properties of low-order face and edge virtual element spaces. IMA J. Numer. Anal. 43 (2022) 828–851. [Google Scholar]
  15. L.B. Da Veiga, F. Brezzi, L.D. Marini and A. Russo, H(div) and H(curl)-conforming virtual element methods. Numer. Math. 133 (2016) 303–332. [Google Scholar]
  16. L.B. da Veiga, F. Brezzi, L.D. Marini and A. Russo, Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM: Math. Modell. Numer. Anal. 50 (2016) 727–747. [CrossRef] [EDP Sciences] [Google Scholar]
  17. L.B. da Veiga, F. Brezzi, F. Dassi, L. Marini and A. Russo, Lowest order virtual element approximation of magnetostatic problems. Comput. Methods Appl. Mech. Eng. 332 (2018) 343–362. [CrossRef] [Google Scholar]
  18. L.B. da Veiga, F. Dassi, G. Manzini and L. Mascotto, Virtual elements for Maxwell’s equations. Comput. Math. App. 116 (2022) 82–99. [Google Scholar]
  19. F. Dassi and S. Scacchi, Parallel solvers for virtual element discretizations of elliptic equations in mixed form. Comput. Math. App. 79 (2020) 1972–1989. [Google Scholar]
  20. M. Dauge, Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions. Vol. 1341. Springer (2006). [Google Scholar]
  21. M. Dauge, Regularity and singularities in polyhedral domains. IRMAR (2008) 50. [Google Scholar]
  22. R. Hiptmair and J. Xu, Nodal auxiliary space preconditioning in H(curl) and H(div) spaces. SIAM J. Numer. Anal. 45 (2007) 2483–2509. [CrossRef] [MathSciNet] [Google Scholar]
  23. J. Huang and Y. Yu, Some estimates for virtual element methods in three dimensions. Comput. Methods Appl. Math. 23 (2023) 177–187. [CrossRef] [MathSciNet] [Google Scholar]
  24. T.V. Kolev and P.S. Vassilevski, Parallel auxiliary space AMG for H(curl) problems. J. Comput. Math. 27 (2009) 604–623. [CrossRef] [MathSciNet] [Google Scholar]
  25. T.V. Kolev and P.S. Vassilevski, Parallel auxiliary space AMG solver for H(div) problems. SIAM J. Sci. Comput. 34 (2012) A3079–A3098. [CrossRef] [Google Scholar]
  26. K.-A. Mardal and R. Winther, Preconditioning discretizations of systems of partial differential equations. Numer. Linear Algebra App. 18 (2011) 1–40. [CrossRef] [Google Scholar]
  27. L. Mascotto, The role of stabilization in the virtual element method: a survey. Comput. Math. App. 151 (2023) 244–251. [Google Scholar]
  28. J.-C. Nédélec, Mixed finite elements in R3. Numer. Math. 35 (1980) 315–341. [Google Scholar]
  29. P.-A. Raviart and J.-M. Thomas, A mixed finite element method for 2-nd order elliptic problems, in Mathematical Aspects of Finite Element Methods. Springer Berlin Heidelberg, Berlin, Heidelberg (1977) 292–315. [CrossRef] [Google Scholar]
  30. J. Xu, The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids. Computing 56 (1996) 215–235. [CrossRef] [MathSciNet] [Google Scholar]
  31. Y. Zhu, Auxiliary space preconditioners for linear virtual element method, in Domain Decomposition Methods in Science and Engineering XXV 25. Springer (2020) 383–390. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you