Open Access
Issue
ESAIM: M2AN
Volume 59, Number 1, January-February 2025
Page(s) 389 - 418
DOI https://doi.org/10.1051/m2an/2024080
Published online 08 January 2025
  1. G. Acosta and J.P. Borthagaray, A fractional Laplace equation: Regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55 (2017) 472–495. [Google Scholar]
  2. G. Acosta, F.M. Bersetche and J.P. Borthagaray, Finite element approximations for fractional evolution problems. Fract. Calc. Appl. Anal. 22 (2019) 767–794. [Google Scholar]
  3. R.A. Adams and J.J.F. Fournier, Sobolev Spaces. Pure and Applied Mathematics, 2nd edition. Academic Press, Amsterdam (2003). [Google Scholar]
  4. R. Anton, D. Cohen and L. Quer-Sardanyons, A fully discrete approximation of the one-dimensional stochastic heat equation. IMA J. Numer. Anal. 40 (2020) 247–284. [Google Scholar]
  5. X. Bardina and M. Jolis, Multiple fractional integral with Hurst parameter less than ½. Stochastic Process. Appl. 116 (2006) 463–479. [Google Scholar]
  6. F. Biagini, Y. Hu, B. Øksendal and T. Zhang, Stochastic Calculus for Fractional Brownian Motion and Applications. Probability and its Applications. Springer, London (2008). [Google Scholar]
  7. A. Bonito, W. Lei and J.E. Pasciak, Numerical approximation of the integral fractional Laplacian. Numer. Math. 142 (2019) 235–278. [Google Scholar]
  8. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, 3rd edition. Springer, New York (2008). [Google Scholar]
  9. Y. Cao, J. Hong and Z. Liu, Approximating stochastic evolution equations with additive white and rough noises. SIAM J. Numer. Anal. 55 (2017) 1958–1981. [Google Scholar]
  10. Y. Cao, J. Hong and Z. Liu, Finite element approximations for second-order stochastic differential equation driven by fractional Brownian motion. IMA J. Numer. Anal. 38 (2018) 184–197. [Google Scholar]
  11. A. Comegna, A. Coppola, V. Comegna, A. Sommella and C.D. Vitale, Use of a fractional Brownian motion model to mimic spatial horizontal variation of soil physical and hydraulic properties displaying a power-law variogram, in Four Decades of Progress in Monitoring and Modeling of Processes in the Soil-Plant-Atmosphere System: Applications and Challenges, Procedia Environmental Sciences. Vol. 19 (2013) 416–425. [Google Scholar]
  12. W. Deng, R. Hou, W. Wang and P. Xu, Modeling Anomalous Diffusion: From Statistics to Mathematics. World Scientific, Singapore (2020). [Google Scholar]
  13. E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012) 521–573. [Google Scholar]
  14. C.M. Elliott and S. Larsson, Error estimates with smooth and nonsmooth data for a finite element method for the Cahn–Hilliard equation. Math. Comp. 58 (1992) 603–630. [Google Scholar]
  15. V.J. Ervin and J.P. Roop, Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differential Equations 22 (2006) 558–576. [Google Scholar]
  16. W. Eugene and Z. Moshe, On the convergence of ordinary integrals to stochastic integrals. Ann. Math. Statist. 36 (1965) 1560–1564. [CrossRef] [MathSciNet] [Google Scholar]
  17. W. Eugene and Z. Moshe, On the relation between ordinary and stochastic differential equations. Int. J. Eng. Sci. 3 (1965) 213–229. [Google Scholar]
  18. M. Gunzburger, B. Li and J. Wang, Sharp convergence rates of time discretization for stochastic time-fractional PDEs subject to additive space-time white noise. Math. Comp. 88 (2018) 1715–1741. [Google Scholar]
  19. I. Gyöngy, Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise I. Potential Anal. 9 (1998) 1–25. [Google Scholar]
  20. I. Gyöngy, Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise II. Potential Anal. 11 (1999) 1–37. [Google Scholar]
  21. I. Gyöngy and D. Nualart, Implicit scheme for quasi-linear parabolic partial differential equations perturbed by space-time white noise. Stochastic Process. Appl. 58 (1995) 57–72. [Google Scholar]
  22. I. Gyöngy and D. Nualart, Implicit scheme for stochastic parabolic partial differential equations driven by space-time white noise. Potential Anal. 7 (1997) 725–757. [Google Scholar]
  23. A. Laptev, Dirichlet and Neumann eigenvalue problems on domains in Euclidean spaces. J. Funct. Anal. 151 (1997) 531–545. [Google Scholar]
  24. P. Li and S.-T. Yau, On the Schrödinger equation and the eigenvalue problem. Comm. Math. Phys. 88 (1983) 309–318. [CrossRef] [MathSciNet] [Google Scholar]
  25. Z. Liu and Z. Qiao, Wong–Zakai approximations of stochastic Allen–Cahn equation. Int. J. Numer. Anal. Model. 16 (2019) 681–694. [Google Scholar]
  26. C. Lubich, I. Sloan and V. Thomée, Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comp. 65 (1996) 1–17. [Google Scholar]
  27. T. Martinez and M. Sanz-Sole, A lattice scheme for stochastic partial differential equations of elliptic type in dimension d ≥ 4. Appl. Math. Optim. 54 (2006) 343–368. [CrossRef] [MathSciNet] [Google Scholar]
  28. D. Nie, J. Sun and W. Deng, Numerical algorithm for the space-time fractional Fokker–Planck system with two internal states. Numer. Math. 146 (2020) 481–511. [Google Scholar]
  29. I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering. Academic Press, San Diego (1999). [Google Scholar]
  30. L. Quer-Sardanyons and M. Sanz-Solé, Space semi-discretisations for a stochastic wave equation. Potential Anal. 24 (2006) 303–332. [Google Scholar]
  31. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer Series in Computational Mathematics, 2nd edition. Springer, New York (2006). [Google Scholar]
  32. T. Zhang, Lattice approximations of reflected stochastic partial differential equations driven by space-time white noise. Ann. Appl. Probab. 26 (2016) 3602–3629. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you