Open Access
Issue |
ESAIM: M2AN
Volume 59, Number 1, January-February 2025
|
|
---|---|---|
Page(s) | 1 - 41 | |
DOI | https://doi.org/10.1051/m2an/2024076 | |
Published online | 08 January 2025 |
- F. Auclair, L. Debreu, E. Duval, M. Hilt, P. Marchesiello, E. Blayo, F. Dumas and Y. Morel, Theory and analysis of acoustic-gravity waves in a free-surface compressible and stratified ocean. Ocean Modell. 168 (2021) 101900. [Google Scholar]
- A.-S. Bonnet-Ben Dhia, K. Berriri and P. Joly, Régularisation de l’équation de galbrun pour l’aéroacoustique en régime transitoire. Vol. 5, Special Issue TAM’05 (1855). [Google Scholar]
- A.-S. Bonnet-Ben Dhia, E.-M. Duclairoir, G. Legendre and J.-F. Mercier, Time-harmonic acoustic propagation in the presence of a shear flow. J. Comput. Appl. Math. 204 (2007) 428–439. [Google Scholar]
- F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Vol. 15 of Springer Series in Computational Mathematics. Springer (1991). [Google Scholar]
- J. Caplan-Auerbach, C.G. Fox and F.K. Duennebier, Hydroacoustic detection of submarine landslides on Kilauea volcano. Geophys. Res. Lett. 28 (2001) 1811–1813. [Google Scholar]
- J. Caplan-Auerbach, R.P. Dziak, D.R. Bohnenstiehl, W.W. Chadwick and T.-K. Lau, Hydroacoustic investigation of submarine landslides at West Mata volcano, Lau Basin. Geophys. Res. Lett. 41 (2014) 5927–5934. [Google Scholar]
- C. Cecioni, G. Bellotti, A. Romano, A. Abdolali, P. Sammarco and L. Franco, Tsunami early warning system based on real-time measurements of hydro-acoustic waves. Proc. Eng. 70 (2014) 311–320. [Google Scholar]
- G.C. Cohen, Higher-Order Numerical Methods for Transient Wave Equations. Scientific Computation. Springer Berlin, Heidelberg (2001). [Google Scholar]
- G.C. Cohen and S. Imperiale, Perfectly matched layer with mixed spectral elements for the propagation of linearized water waves. Commun. Comput. Phys. 11 (2012) 285–302. [CrossRef] [MathSciNet] [Google Scholar]
- R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 5 of Evolution Problems, Nachdr. edition. Vol. 5. Springer (2000). [Google Scholar]
- J. Dubois, S. Imperiale, A. Mangeney, F. Bouchut and J. Sainte-Marie, Acoustic and gravity waves in the ocean: a new derivation of a linear model from the compressible Euler equation. J. Fluid Mech. 970 (2023) A28. [Google Scholar]
- L.C. Evans, Partial Differential Equations. Graduate Studies in Mathematics. American Mathematical Society (AMS) (2004). [Google Scholar]
- M. Ewing, I. Tolstoy and F. Press, Proposed use of the T phase in tsunami warning systems. Bull. Seismol. Soc. Am. 40 (1950) 53–58. [CrossRef] [Google Scholar]
- E. Eyov, A. Klar, U. Kadri and M. Stiassnie, Progressive waves in a compressible-ocean with an elastic bottom. Wave Motion 50 (2013) 929–939. [Google Scholar]
- A.E. Gill, Atmosphere-Ocean Dynamics. International Geophysics Series. Academic Press (1982). [Google Scholar]
- V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Vol. 5 of Springer Series in Computational Mathematics, 1st edition. Springer (1986). [Google Scholar]
- B. Gomez and U. Kadri, Near real-time calculation of submarine fault properties using an inverse model of acoustic signals. Appl. Ocean Res. 109 (2021) 102557. [CrossRef] [Google Scholar]
- G. Grubb, Distributions and Operators. Vol. 252 of Graduate Texts in Mathematics. Springer (2009). [Google Scholar]
- M. Halla and T. Hohage, On the well-posedness of the damped time-harmonic Galbrun equation and the equations of stellar oscillations. SIAM J. Math. Anal. 53 (2021) 4068–4095. [CrossRef] [MathSciNet] [Google Scholar]
- L. H¨agg and M. Berggren, On the well-posedness of Galbrun’s equation. J. Math. App. 150 (2021) 112–133. [Google Scholar]
- F.B. Jensen, W.A. Kuperman, M.B. Porter and H. Schmidt, Computational Ocean Acoustics. Springer New York (2011). [CrossRef] [Google Scholar]
- P. Joly, C. Tsogka, G. Derveaux and J. Rodriguez, Effective Computational Methods for Wave Propagation. Part 3: Numerical Methods for Elastic Wave Propagation, 1 edition. Chapman and Hall/CRC (2008). [Google Scholar]
- D. Komatitsch and J. Tromp, Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophys. J. Int. 139 (1999) 806–822. [Google Scholar]
- J.L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Springer Berlin Heidelberg (1972). [Google Scholar]
- M.S. Longuet-Higgins, A theory of the origin of microseisms. Philos. Trans. R. Soc. London Ser. A Math. Phys. Sci. 243 (1950) 1–35. [Google Scholar]
- M. Maeder, G. Gabard and S. Marburg, 90 years of Galbrun’s equation: an unusual formulation for aeroacoustics and hydroacoustics in terms of the Lagrangian displacement. J. Theor. Comput. Acoustics 28 (2020) 2050017. [Google Scholar]
- P. Sammarco, C. Cecioni, G. Bellotti and A. Abdolali, Depth-integrated equation for large-scale modelling of low-frequency hydroacoustic waves. J. Fluid Mech. 722 (2013) R6. [Google Scholar]
- UNESCO, Tenth report of the joint panel on oceanographic tables and standards (1980). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.