Open Access
Issue
ESAIM: M2AN
Volume 59, Number 1, January-February 2025
Page(s) 579 - 612
DOI https://doi.org/10.1051/m2an/2024083
Published online 16 January 2025
  1. A. Bressan and A. Constantin, Global solutions of the Hunter–Saxton equation. SIAM J. Math. Anal. 37 (2005) 996–1026. [CrossRef] [MathSciNet] [Google Scholar]
  2. A. Bressan, H. Holden and X. Raynaud, Lipschitz metric for the Hunter–Saxton equation. J. Math. Pures Appl. 94 (2010) 68–92. [CrossRef] [MathSciNet] [Google Scholar]
  3. T. Christiansen, K. Grunert, A. Nordli and S. Solem, A convergent numerical algorithm for α-dissipative solutions of the Hunter–Saxton equation. J. Sci. Comput. 99 (2024) 14. [CrossRef] [Google Scholar]
  4. T. Cieślak and G. Jamróz, Maximal dissipation in Hunter–Saxton equation for bounded energy initial data. Adv. Math. 290 (2016) 590–613. [CrossRef] [MathSciNet] [Google Scholar]
  5. C.M. Dafermos, Continuous solutions for balance laws. Ric. Mat. 55 (2006) 79–91. [CrossRef] [MathSciNet] [Google Scholar]
  6. C.M. Dafermos, Generalized characteristics and the Hunter–Saxton equation. J. Hyperbolic Differ. Equ. 8 (2011) 159–168. [CrossRef] [Google Scholar]
  7. G.B. Folland, Real Analysis: Modern Techniques and Their Applications. Pure and Applied Mathematics, 2nd edition. A Wiley-Interscience Publication, New York (1999). [Google Scholar]
  8. M. Grasmair, K. Grunert and H. Holden, On the equivalence of Eulerian and Lagrangian variables for the two-component Camassa–Holm system, in Current Research in Nonlinear Analysis. Springer Optim. Appl., edited by T. Rassias. Vol. 135. Springer, Cham (2018) 157–201. [Google Scholar]
  9. K. Grunert, Solutions of the Camassa–Holm equation with accumulating breaking times. Dyn. Part. Differ. Equ. 13 (2016) 91–105. [CrossRef] [Google Scholar]
  10. K. Grunert and H. Holden, Uniqueness of conservative solutions for the Hunter–Saxton equation. Res. Math. Sci. 9 (2022) 19. [CrossRef] [Google Scholar]
  11. K. Grunert and A. Nordli, Existence and Lipschitz stability for α-dissipative solutions of the two-component Hunter–Saxton system. J. Hyperbolic Differ. Equ. 15 (2018) 559–597. [CrossRef] [MathSciNet] [Google Scholar]
  12. K. Grunert and M. Tandy, Lipschitz stability for the Hunter–Saxton equation. J. Hyperbolic Differ. Equ. 19 (2022) 275–310. [CrossRef] [MathSciNet] [Google Scholar]
  13. K. Grunert and M. Tandy, A Lipschitz metric for α-dissipative solutions to the Hunter–Saxton equation. Part. Differ. Equ. Appl. 5 (2024) 24. [CrossRef] [Google Scholar]
  14. K. Grunert, H. Holden and X. Raynaud, Global dissipative solutions of the two-component Camassa–Holm system for initial data with nonvanishing asymptotics. Nonlinear Anal. Real World Appl. 17 (2014) 203–244. [CrossRef] [MathSciNet] [Google Scholar]
  15. K. Grunert, H. Holden and X. Raynaud, A continuous interpolation between conservative and dissipative solutions for the two-component Camassa–Holm system. Forum Math. Sigma 3 (2015) e1. [CrossRef] [Google Scholar]
  16. K. Grunert, A. Nordli and S. Solem, Numerical conservative solutions of the Hunter–Saxton equation. BIT 61 (2021) 441–471. [CrossRef] [MathSciNet] [Google Scholar]
  17. H. Holden and X. Raynaud, Global conservative solutions of the Camassa–Holm equation – a Lagrangian point of view. Comm. Part. Differ. Equ. 32 (2007) 1511–1549. [CrossRef] [Google Scholar]
  18. H. Holden, K.H. Karlsen and N.H. Risebro, Convergent difference schemes for the Hunter–Saxton equation. Math. Comput. 76 (2007) 699–744. [CrossRef] [Google Scholar]
  19. J.K. Hunter and R. Saxton, Dynamics of director fields. SIAM J. Appl. Math. 51 (1991) 1498–1521. [CrossRef] [MathSciNet] [Google Scholar]
  20. J.K. Hunter and Y. Zheng, On a completely integrable nonlinear hyperbolic variational equation. Phys. D. 79 (1994) 361–386. [CrossRef] [MathSciNet] [Google Scholar]
  21. J.K. Hunter and Y. Zheng, On a nonlinear hyperbolic variational equation. I. Global existence of weak solutions. Arch. Ration. Mech. Anal. 129 (1995) 305–353. [CrossRef] [Google Scholar]
  22. Y. Miyatake, D. Cohen, D. Furihata and T. Matsuo, Geometric numerical integrators for Hunter–Saxton-like equations. Jpn. J. Ind. Appl. Math. 34 (2017) 441–472. [CrossRef] [MathSciNet] [Google Scholar]
  23. A. Nordli, On the two-component Hunter–Saxton system. Ph.D. thesis, Norwegian University of Science and Technology (NTNU) (2017). [Google Scholar]
  24. Y. Xu and C.-W. Shu, Local discontinuous Galerkin method for the Hunter–Saxton equation and its zero-viscosity and zero-dispersion limits. SIAM J. Sci. Comput. 31 (2009) 1249–1268. [CrossRef] [Google Scholar]
  25. Y. Xu and C.-W. Shu, Dissipative numerical methods for the Hunter–Saxton equation. J. Comput. Math. 28 (2010) 606–620. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you