Open Access
Issue
ESAIM: M2AN
Volume 59, Number 2, March-April 2025
Page(s) 693 - 727
DOI https://doi.org/10.1051/m2an/2024068
Published online 14 March 2025
  1. R. Adams and J. Fournier, Sobolev Spaces. Academic Press (2003). [Google Scholar]
  2. F. Arandiga, A. Cohen, R. Donat, N. Dyn and B. Matei, Approximation of piecewise smooth functions and images by edge-adapted (ENO-EA) nonlinear multiresolution techniques. Appl. Comput. Harmon. Anal. 24 (2008) 225–250. [CrossRef] [MathSciNet] [Google Scholar]
  3. A. Cohen, M. Dolbeault, O. Mula and A. Somacal, Nonlinear approximation spaces for inverse problems. Anal. Appl. (AA) 21 (2023) 217–253. [CrossRef] [Google Scholar]
  4. B. Després and H. Jourdren, Machine learning design of volume of fluid schemes for compressible flows. J. Comput. Phys. 408 (2020) 109275. [CrossRef] [MathSciNet] [Google Scholar]
  5. V. Dyadechko and M. Shashkov, Reconstruction of multi-material interfaces from moment data. J. Comput. Phys. 227 (2008) 361–5384. [Google Scholar]
  6. D. Gueyffier, J. Li, A. Nadim, R. Scardovelli and S. Zaleski, Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows. J. Comput. Phys. 152 (1999) 423–56. [CrossRef] [Google Scholar]
  7. A. Harten, ENO schemes with subcell resolution. J. Comput. Phys. 83 (1989) 148–184. [CrossRef] [MathSciNet] [Google Scholar]
  8. A. Harten, B. Engquist, S. Osher and C. Chakravarthy, Uniformly high order accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 71 (1987) 231–303. [CrossRef] [MathSciNet] [Google Scholar]
  9. C.W. Hirt and B.D. Nichols, Volume of Fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39 (1981) 201–225. [CrossRef] [Google Scholar]
  10. J. Necas, Les méthodes directes en théorie des équations elliptiques. Masson (1967). [Google Scholar]
  11. W.F. Noh and P. Woodward, SLIC (Simple Line Interface Calculation). Lecture Notes in Physics, edited by A.I. van der Vooren and P.J. Zandbergen. Springer, New York (1976) 330. [Google Scholar]
  12. OBERA and AEROS classes. Open-source python package https://github.com/agussomacal/SubCellResolution. [Google Scholar]
  13. J.E. Pilliod and E.G. Puckett, Second-order accurate volume-of-fluid algorithms for tracking material interfaces. J. Comput. Phys. 199 (2004) 465–502. [CrossRef] [MathSciNet] [Google Scholar]
  14. E.G. Puckett, A volume-of-fluid interface tracking algorithm with applications to computing shock wave refraction, in Proceedings of the Fourth International Symposium on Computational Fluid Dynamics (1991) 933–938. [Google Scholar]
  15. R.A. Remmerswaal and A.E.P. Veldman, Parabolic interface reconstruction for 2D volume of fluid methods. J. Comput. Phys. 469 (2022) 111473. [CrossRef] [Google Scholar]
  16. W.J. Rider and D.B. Kothe, Reconstructing volume tracking. J. Comput. Phys. 141 (1998) 112–152. [CrossRef] [MathSciNet] [Google Scholar]
  17. M. Rudman, Volume-tracking methods for interfacial flow calculations. Int. J. Numer. Methods Fluids 24 (1997) 671–691. [CrossRef] [Google Scholar]
  18. R. Scardovelli and S. Zaleski, Direct numerical simulation of free-surface and interfacial flow. Annu. Rev. Fluid Mech. 31 (1999) 567–603. [CrossRef] [Google Scholar]
  19. G. Weymouth and D.K.-P. Yue, Conservative volume-of-fluid method for free-surface simulations on cartesian-grids. J. Comput. Phys. 229 (2010) 2853–2865. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you