Open Access
Issue
ESAIM: M2AN
Volume 59, Number 2, March-April 2025
Page(s) 729 - 748
DOI https://doi.org/10.1051/m2an/2025002
Published online 25 February 2025
  1. L. Abia and J.M. Sanz-Serna, Partitioned Runge–Kutta methods for separable Hamiltonian problems. Math. Com- put. 60 (1993) 617–634. [CrossRef] [Google Scholar]
  2. A. Aubry and P. Chartier, Pseudo-symplectic Runge–Kutta methods. BIT Numer. Math. 38 (1998) 439–461. [CrossRef] [Google Scholar]
  3. G.A. Barrios de León, D.I. Ketcheson and H. Ranocha, Reproducibility repository for “Pseudo-energy-preserving explicit Runge-Kutta methods”. DOI: https://doi.org/10.5281/zenodo.12699752 (2024). [Google Scholar]
  4. T.B. Benjamin, J.L. Bona and J.J. Mahony, Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. London Ser. A Math. Phys. Sci. 272 (1972) 47–78. [Google Scholar]
  5. J. Bezanson, A. Edelman, S. Karpinski and V.B. Shah, Julia: a fresh approach to numerical computing. SIAM Rev. 59 (2017) 65–98. [CrossRef] [MathSciNet] [Google Scholar]
  6. G. Bogfjellmo, Algebraic structure of aromatic B-series. J. Comput. Dyn. 6 (2019) 199–222. [CrossRef] [MathSciNet] [Google Scholar]
  7. J.C. Butcher, Numerical Methods for Ordinary Differential Equations. Wiley (2003). [CrossRef] [Google Scholar]
  8. J.C. Butcher, B-Series: Algebraic Analysis of Numerical Methods. Vol. 55. Springer (2021). [CrossRef] [Google Scholar]
  9. M.P. Calvo and J.M. Sanz-Serna, Canonical B-series. Numer. Math. 67 (1994) 161–175. [CrossRef] [MathSciNet] [Google Scholar]
  10. M. Calvo, D. Hernández-Abreu, J.I. Montijano and L. Rández, On the preservation of invariants by explicit Runge– Kutta methods. SIAM J. Sci. Comput. 28 (2006) 868–885. [CrossRef] [MathSciNet] [Google Scholar]
  11. M. Calvo, M.P. Laburta, J.I. Montijano and L. Rández, Approximate preservation of quadratic first integrals by explicit Runge–Kutta methods. Adv. Comput. Math. 32 (2010) 255–274. [CrossRef] [MathSciNet] [Google Scholar]
  12. F. Capuano, G. Coppola, L. Rández and L. de Luca, Explicit Runge–Kutta schemes for incompressible flow with improved energy-conservation properties. J. Comput. Phys. 328 (2017) 86–94. [CrossRef] [MathSciNet] [Google Scholar]
  13. E. Celledoni, R.I. McLachlan, D.I. McLaren, B. Owren, G.R.W. Quispel and W.M. Wright, Energy-preserving Runge–Kutta methods. ESAIM: Math. Modell. Numer. Anal. 43 (2009) 645–649. [CrossRef] [EDP Sciences] [Google Scholar]
  14. E. Celledoni, R.I. McLachlan, B. Owren and G.R.W. Quispel, Energy-preserving integrators and the structure of B-series. Found. Comput. Math. 10 (2010) 673–693. [CrossRef] [MathSciNet] [Google Scholar]
  15. P. Chartier, E. Hairer and G. Vilmart, Algebraic structures of B-series. Found. Comput. Math. 10 (2010) 407–427. [CrossRef] [MathSciNet] [Google Scholar]
  16. A. Debussche and E. Faou, Modified energy for split-step methods applied to the linear Schrödinger equation. SIAM J. Numer. Anal. 47 (2009) 3705–3719. [CrossRef] [MathSciNet] [Google Scholar]
  17. A. Durán and J.M. Sanz-Serna, The numerical integration of relative equilibrium solutions: geometric theory. Non- linearity 11 (1998) 1547. [Google Scholar]
  18. A. Durán and J.M. Sanz-Serna, The numerical integration of relative equilibrium solutions. The nonlinear Schrödinger equation. IMA J. Numer. Anal. 20 (2000) 235–261. [CrossRef] [MathSciNet] [Google Scholar]
  19. M. Frigo and S.G. Johnson, The design and implementation of FFTW3. Proc. IEEE 93 (2005) 216–231. [NASA ADS] [CrossRef] [Google Scholar]
  20. E. Hairer, Energy-preserving variant of collocation methods. JNAIAM, J. Numer. Anal. Ind. Appl. Math. 2 (2010) 73–84. [Google Scholar]
  21. E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordi- nary Differential Equations. Vol. 31 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin Heidelberg (2006). [Google Scholar]
  22. J. Hong, D. Xu and P. Wang, Preservation of quadratic invariants of stochastic differential equations via Runge– Kutta methods. Appl. Numer. Math. 87 (2014) 38–52. [Google Scholar]
  23. D.I. Ketcheson, Relaxation Runge–Kutta methods: conservation and stability for inner-product norms. SIAM J. Numer. Anal. 57 (2019) 2850–2870. [CrossRef] [MathSciNet] [Google Scholar]
  24. D.I. Ketcheson and H. Ranocha, Computing with B-series. ACM Trans. Math. Softw. 49 (2023) 1–23. [CrossRef] [Google Scholar]
  25. D.I. Ketcheson, M. Parsani, Z.J. Grant, A. Ahmadia and H. Ranocha, RK-Opt: a package for the design of numerical ODE solvers. J. Open Source Softw. 5 (2020) 2514. [CrossRef] [Google Scholar]
  26. W. Kutta, Beitrag zur n¨aherungsweisen Integration totaler Differentialgleichungen. Zeitschrift für Mathematik und Physik 46 (1901) 435–453. [Google Scholar]
  27. A. Laurent, R.I. McLachlan, H.Z. Munthe-Kaas and O. Verdier, The aromatic bicomplex for the description of divergence-free aromatic forms and volume-preserving integrators, in Forum of Mathematics, Sigma. Vol. 11 (2023) e69. [CrossRef] [Google Scholar]
  28. V. Linders, H. Ranocha and P. Birken, Resolving entropy growth from iterative methods. BIT Numer. Math. 63 (2023) 45. [CrossRef] [Google Scholar]
  29. R.I. McLachlan, G.R.W. Quispel and N. Robidoux, Geometric integration using discrete gradients. Philos. Trans. R. Soc. London Ser. A Math. Phys. Eng. Sci. 357 (1999) 1021–1045. [CrossRef] [MathSciNet] [Google Scholar]
  30. A. Meurer, C.P. Smith, M. Paprocki, O. Čertík, S.B. Kirpichev, M. Rocklin, A. Kumar, S. Ivanov, J.K. Moore, S. Singh, T. Rathnayake, S. Vig, B.E. Granger, R.P. Muller, F. Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pedregosa, M.J. Curry, A.R. Terrel, Š. Roučka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman and A. Scopatz, SymPy: symbolic computing in Python. PeerJ Comput. Sci. 3 (2017) e103. [CrossRef] [Google Scholar]
  31. Y. Miyatake, An energy-preserving exponentially-fitted continuous stage Runge–Kutta method for Hamiltonian systems. BIT Numer. Math. 54 (2014) 777–799. [CrossRef] [Google Scholar]
  32. Y. Miyatake and J.C. Butcher, A characterization of energy-preserving methods and the construction of parallel integrators for Hamiltonian systems. SIAM J. Numer. Anal. 54 (2016) 1993–2013. [CrossRef] [MathSciNet] [Google Scholar]
  33. H. Munthe-Kaas and O. Verdier, Aromatic Butcher series. Found. Comput. Math. 16 (2016) 183–215. [CrossRef] [MathSciNet] [Google Scholar]
  34. G. Quispel and D. Mclaren, A new class of energy-preserving numerical integration methods. J. Phys. A: Math. Theor. 41 (2008) 045206. [CrossRef] [Google Scholar]
  35. H. Ranocha, On strong stability of explicit Runge–Kutta methods for nonlinear semibounded operators. IMA J. Numer. Anal. 41 (2021) 654–682. [CrossRef] [MathSciNet] [Google Scholar]
  36. H. Ranocha, SummationByPartsOperators.jl: a Julia library of provably stable semidiscretization techniques with mimetic properties. J. Open Source Softw. 6 (2021) 3454. [CrossRef] [Google Scholar]
  37. H. Ranocha and D.I. Ketcheson, Energy stability of explicit Runge–Kutta methods for nonautonomous or nonlinear problems. SIAM J. Numer. Anal. 58 (2020) 3382–3405. [CrossRef] [MathSciNet] [Google Scholar]
  38. H. Ranocha and D.I. Ketcheson, Relaxation Runge–Kutta methods for Hamiltonian problems. J. Sci. Comput. 84 (2020) 17. [CrossRef] [Google Scholar]
  39. H. Ranocha, L. Lóczi and D.I. Ketcheson, General relaxation methods for initial-value problems with application to multistep schemes. Numer. Math. 146 (2020) 875–906. [CrossRef] [MathSciNet] [Google Scholar]
  40. H. Ranocha, M. Sayyari, L. Dalcin, M. Parsani and D. Ketcheson, Relaxation Runge–Kutta methods: fully discrete explicit entropy-stable schemes for the compressible Euler and Navier–Stokes equations. SIAM J. Sci. Comput. 42 (2020) A612–A638. [CrossRef] [Google Scholar]
  41. H. Ranocha, M.Q. de Luna and D.I. Ketcheson, On the rate of error growth in time for numerical solutions of nonlinear dispersive wave equations. Part. Differ. Equ. App. 2 (2021) 76. [CrossRef] [Google Scholar]
  42. C. Runge, Über die numerische Auflösung von Differentialgleichungen. Math. Annal. 46 (1895) 167–178. [CrossRef] [Google Scholar]
  43. M. Stepanov, Eight-stage pseudo-symplectic Runge–Kutta methods of order (4, 8). Preprint arXiv.2301.09335 (2023). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you