Open Access
Issue
ESAIM: M2AN
Volume 59, Number 2, March-April 2025
Page(s) 1043 - 1074
DOI https://doi.org/10.1051/m2an/2025013
Published online 02 April 2025
  1. O. Andersen, H.M. Nilsen and X. Raynaud, Virtual element method for geomechanical simulations of reservoir models. Comput. Geosci. 21 (2017) 877–893. [Google Scholar]
  2. L. Beaude, F. Chouly, M. Laaziri and R. Masson, Mixed and nitsche’s discretizations of coulomb frictional contact-mechanics for mixed dimensional poromechanical models. Comput. Methods Appl. Mech. Eng. 413 (2023) 116124. [Google Scholar]
  3. L. Beir˜ao Da Veiga, F. Brezzi and L. Marini, Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51 (2013) 794–812. [CrossRef] [MathSciNet] [Google Scholar]
  4. F. Ben Belgacem and Y. Renard, Hybrid finite element methods for the signorini problem. Math. Comput. 72 (2003) 1117–1145. [CrossRef] [Google Scholar]
  5. R.L. Berge, I. Berre, E. Keilegavlen, J.M. Nordbotten and B. Wohlmuth, Finite volume discretization for poroelastic media with fractures modeled by contact mechanics. Int. J. Numer. Methods Eng. 121 (2019) 644–663.. [Google Scholar]
  6. F. Bonaldi, K. Brenner, J. Droniou and R. Masson, Gradient discretization of two-phase flows coupled with mechanical deformation in fractured porous media. Comput. Math. Appl. 98 (2021) 40–68. [Google Scholar]
  7. F. Bonaldi, K. Brenner, J. Droniou, R. Masson, A. Pasteau and L. Trenty, Gradient discretization of two-phase poro-mechanical models with discontinuous pressures at matrix fracture interfaces. ESAIM: Math. Model. Numer. Anal. 55 (2021) 1741–1777. [MathSciNet] [Google Scholar]
  8. F. Bonaldi, J. Droniou, R. Masson and A. Pasteau, Energy-stable discretization of two-phase flows in deformable porous media with frictional contact at matrix-fracture interfaces. J. Comput. Phys. 455 (2022) 28. [Google Scholar]
  9. W.M. Boon and J.M. Nordbotten, Mixed-dimensional poromechanical models of fractured porous media. Acta Mech. 234 (2023) 1121–1168. [Google Scholar]
  10. A. Borio, F. Hamon, N. Castelletto, J. White and R. Settgast, Hybrid mimetic finite-difference and virtual element formulation for coupled poromechanics. Comput. Methods Appl. Mech. Eng. 383 (2021) 113917. [Google Scholar]
  11. H. Chi, L.B. da Veiga and G. Paulino, Some basic formulations of the virtual element method (VEM) for finite deformations. Comput. Methods Appl. Mech. Eng. 318 (2017) 148–192. [Google Scholar]
  12. F. Chouly, A. Ern and N. Pignet, A hybrid high-order discretization combined with Nitsche’s method for contact and tresca friction in small strain elasticity. SIAM J. Sci. Comput. 42 (2020) A2300–A2324. [CrossRef] [Google Scholar]
  13. J. Coulet, I. Faille, V. Girault, N. Guy and F. Nataf, A fully coupled scheme using virtual element method and finite volume for poroelasticity. Comput. Geosci. 24 (2020) 381–403. [Google Scholar]
  14. L.B. Da Veiga, C. Lovadina and D. Mora, A virtual element method for elastic and inelastic problems on polytope meshes. Comput. Methods Appl. Mech. Eng. 295 (2015) 327–346. [CrossRef] [Google Scholar]
  15. D.A. Di Pietro and J. Droniou, The Hybrid High-Order Method for Polytopal Meshes: Design, Analysis, and Applications. Vol. 19 of Modeling, Simulation and Applications. Springer International Publishing (2020). [Google Scholar]
  16. D. Di Pietro and S. Lemaire, An extension of the Crouzeix-Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow. Math. Comput. 84 (2015) 1–31. [Google Scholar]
  17. J. Droniou, R. Eymard, T. Gallouët, C. Guichard and R. Herbin, The Gradient Discretisation Method. Vol. 82 of Mathematics & Applications. Springer (2018). [Google Scholar]
  18. J. Droniou, G. Enchéry, I. Faille, A. Haidar and R. Masson, A bubble vem–fully discrete polytopal scheme for mixed-dimensional poromechanics with frictional contact at matrix-fracture interfaces. Comput. Methods Appl. Mech. Eng. 422 (2024) 116838. [Google Scholar]
  19. G. Drouet and P. Hild, An accurate local average contact method for nonmatching meshes. Numer. Math. 136 (2017) 467–502. [Google Scholar]
  20. G. Enchéry and L. Agélas, Coupling linear virtual element and non-linear finite volume methods for poroelasticity. C. R. Mécanique 351 (2023) 395–410. [Google Scholar]
  21. A. Franceschini, N. Castelletto, J. White and H. Tchelepi, Algebraically stabilized Lagrange multiplier method for frictional contact mechanics with hydraulically active fractures. Comput. Methods Appl. Mech. Eng. 368 (2020) 113161. [Google Scholar]
  22. T. Garipov and M. Hui, Discrete fracture modeling approach for simulating coupled thermo-hydro-mechanical effects in fractured reservoirs. Int. J. Rock Mech. Mining Sci. 122 (2019) 104075. [Google Scholar]
  23. T.T. Garipov, M. Karimi-Fard and H. Tchelepi, Discrete fracture model for coupled flow and geomechanics. Comput. Geosci. 20 (2016) 149–160. [Google Scholar]
  24. P. Hansbo and M. Larson, Discontinuous Galerkin and the Crouzeix–Raviart element: application to elasticity. ESAIM: Math. Model. Numer. Anal. 37 (2003) 63–72. [Google Scholar]
  25. J. Haslinger, I. Hlavácek and J. Necas, Numerical methods for unilateral problems in solid mechanics, in Finite Element Methods (Part 2), Numerical Methods for Solids (Part 2). Vol. 4 of Handbook of Numerical Analysis. Elsevier (1996) 313–485. [Google Scholar]
  26. E. Keilegavlen and J. Nordbotten, Finite volume methods for elasticity with weak symmetry. Int. J. Numer. Methods Eng. 112 (2017) 939–962. [Google Scholar]
  27. M. Nejati, A. Paluszny and R.W. Zimmerman, A finite element framework for modeling internal frictional contact in three-dimensional fractured media using unstructured tetrahedral meshes. Comput. Methods Appl. Mech. Eng. 306 (2016) 123–150. [Google Scholar]
  28. A. Phan, J. Napier, L. Gray and T. Kaplan, Symmetric-Galerkin BEM simulation of fracture with frictional contact. Int. J. Numer. Methods Eng. 57 (2003) 835–851. [Google Scholar]
  29. I. Stefansson, I. Berre and E. Keilegavlen, A fully coupled numerical model of thermo-hydro-mechanical processes and fracture contact mechanics in porous media. Comput. Methods Appl. Mech. Eng. 386 (2021) 114122. [Google Scholar]
  30. P. Wriggers, W.T. Rust and B.D. Reddy, A virtual element method for contact. Comput. Mech. 58 (2016) 1039–1050. [Google Scholar]
  31. P. Wriggers, F. Aldakheel and B. Hudobivnik, Virtual Elements for Fracture Processes. Springer International Publishing, Cham (2024) 243–315. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you