Open Access
Issue |
ESAIM: M2AN
Volume 59, Number 2, March-April 2025
|
|
---|---|---|
Page(s) | 1113 - 1144 | |
DOI | https://doi.org/10.1051/m2an/2025017 | |
Published online | 08 April 2025 |
- G. Dal Maso, P.G. LeFloch and F. Murat, Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74 (1995) 483–548. [MathSciNet] [Google Scholar]
- M.J. Castro Díaz, J. Gallardo and C. Parés, High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems. Math. Comput. 75 (2006) 1103–1134. [CrossRef] [Google Scholar]
- K. Iimura and N. Tanaka, Numerical simulation estimating effects of tree density distribution in coastal forest on tsunami mitigation. Ocean Eng. 54 (2012) 223–232. [CrossRef] [Google Scholar]
- R. Rodríguez, P. Encina, M. Espinosa and N. Tanaka, Field study on planted forest structures and their role in protecting communities against tsunamis: experiences along the coast of the Biobío Region, Chile. Landscape Ecol. Eng. 12 (2016) 1–12. [CrossRef] [Google Scholar]
- N. Tanaka, Y. Sasaki, M.I.M. Mowjood, K.B.S.N. Jinadasa and S. Homchuen, Coastal vegetation structures and their functions in tsunami protection: experience of the recent Indian Ocean tsunami. Landscape Ecol. Eng. 3 (2007) 33–45. [CrossRef] [Google Scholar]
- N. Tanaka, Effectiveness and limitations of vegetation bioshield in coast for tsunami disaster mitigation, Chapter 9, in The Tsunami Threat – Research and Technology edited by N.-A. Mörner. InTech Rijeka, Croatia (2011) 161–178. [Google Scholar]
- H. Yanagisawa, S. Koshimura, K. Goto, T. Miyagi, F. Imamura, A. Ruangrassamee and C. Tanavud, The reduction effects of mangrove forest on a tsunami based on field surveys at Pakarang Cape, Thailand and numerical analysis. Estuar. Coast. Shelf Sci. 81 (2009) 27–37. [CrossRef] [Google Scholar]
- A.J. Chorin, The numerical solution of the Navier–Stokes equations for an incompressible fluid. Bull. Am. Math. Soc. 73 (1967) 928–931. [CrossRef] [Google Scholar]
- A.J. Chorin, Numerical solution of the Navier–Stokes equations. Math. Comput. 22 (1968) 745–762. [CrossRef] [Google Scholar]
- A.J. Chorin and J.E. Marsden, A Mathematical Introduction to Fluid Mechanics, 3rd edition. Springer, New York (1993). [Google Scholar]
- M.J. Castro and E. Fernández-Nieto, A class of computationally fast first order finite volume solvers: PVM methods. SIAM J. Sci. Comput. 34 (2012) A2173–A2196. [CrossRef] [Google Scholar]
- C. Parés, Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. Anal. 44 (2006) 300–321. [Google Scholar]
- M.J. Castro, T. Morales de Luna and C. Parés, Well-balanced schemes and path-conservative numerical methods, Chapter 6, in Handbook of Numerical Methods for Hyperbolic Problems: Applied and Modern Issues. Handbook of Numerical Analysis, edited by R. Abgrall and C.-W. Shu. Vol. 18. Elsevier/North Holland, Amsterdam (2017) 131–175. [Google Scholar]
- I. Toumi, A weak formulation of Roe’s approximate Riemann solver. J. Comput. Phys. 102 (1992) 360–373. [Google Scholar]
- C. Parés and M.J. Castro, On the well-balance property of Roe’s method for nonconservative hyperbolic systems. Applications to shallow-water systems. M2AN Math. Model. Numer. Anal. 38 (2004) 821–852. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- P.L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43 (1981) 357–372. [Google Scholar]
- E. Audusse, A multilayer Saint-Venant model: derivation and numerical validation. Discrete Contin. Dyn. Syst. Ser. B 5 (2005) 189–214. [CrossRef] [MathSciNet] [Google Scholar]
- E. Audusse and M.-O. Bristeau, Finite-volume solvers for a multilayer Saint-Venant system. Int. J. Appl. Math. Comput. Sci. 17 (2007) 311–319. [CrossRef] [MathSciNet] [Google Scholar]
- E. Audusse, M.-O. Bristeau and A. Decoene, Numerical simulations of 3D free surface flows by a multilayer Saint-Venant model. Int. J. Numer. Methods Fluids 56 (2008) 331–350. [Google Scholar]
- E. Audusse, M. Bristeau, B. Perthame and J. Sainte-Marie, A multilayer Saint-Venant system with mass exchanges for shallow water flows. Derivation and numerical validation. ESAIM: Math. Model. Numer. Anal. 45 (2011) 169–200. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- E. Audusse, M.-O. Bristeau, M. Pelanti and J. Sainte-Marie, Approximation of the hydrostatic Navier–Stokes system for density stratified flows by a multilayer model: kinetic interpretation and numerical solution. J. Comput. Phys. 230 (2011) 3453–3478. [CrossRef] [MathSciNet] [Google Scholar]
- E.D. Fernández-Nieto, E.H. Koné and T. Chacón Rebollo, A multilayer method for the hydrostatic Navier–Stokes equations: a particular weak solution. J. Sci. Comput. 60 (2014) 408–437. [Google Scholar]
- J. Sainte-Marie, Vertically averaged models for the free surface non-hydrostatic Euler system: derivation and kinetic interpretation. Math. Models Methods Appl. Sci. 21 (2011) 459–490. [Google Scholar]
- R. Bürger, E.D. Fernández-Nieto and V. Osores, A dynamic multilayer shallow water model for polydisperse sedimentation. ESAIM: Math. Model. Numer. Anal. 53 (2019) 1391–1432. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- R. Bürger, E.D. Fernández-Nieto and V. Osores, A multilayer shallow water approach for polydisperse sedimentation with sediment compressibility and mixture viscosity. J. Sci. Comput. 85 (2020) 49. [CrossRef] [Google Scholar]
- E.D. Fernández-Nieto, E.H. Koné, T. Morales de Luna and R. Bürger, A multilayer shallow water system for polydisperse sedimentation. J. Comput. Phys. 238 (2013) 281–314. [Google Scholar]
- C. Escalante Sánchez, E.D. Fernández-Nieto, T. Morales de Luna, Y. Penel and J. Sainte-Marie, Numerical simulations of a dispersive model approximating free-surface Euler equations. J. Sci. Comput. 89 (2021) 55. [CrossRef] [Google Scholar]
- E.D. Fernández-Nieto, M. Parisot, Y. Penel and J. Sainte-Marie, A hierarchy of dispersive layer-averaged approximations of Euler equations for free surface flows. Commun. Math. Sci. 16 (2018) 1169–1202. [CrossRef] [MathSciNet] [Google Scholar]
- N. Shuto, The effectiveness and limit of tsunami control forests. Coastal Eng. Jpn. 30 (1987) 143–153. [Google Scholar]
- M.J. Castro, A.M. Ferreiro Ferreiro, J.A. García-Rodríguez, J.M. González-Vida, J. Macías, C. Parés and M.E. Vázquez-Cendón, The numerical treatment of wet/dry fronts in shallow flows: application to one-layer and two-layer systems. Math. Comput. Model. 42 (2005) 419–439. [CrossRef] [Google Scholar]
- A. Kurganov and G. Petrova, A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system. Commun. Math. Sci. 5 (2007) 133–160. [Google Scholar]
- E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25 (2004) 2050–2065. [Google Scholar]
- E. Fernández-Nieto, J. Garres-Díaz, A. Mangeney and G. Narbona-Reina, A multilayer shallow model for dry granular flows with the μ(I)-rheology: application to granular collapse on erodible beds. J. Fluid Mech. 798 (2016) 643–681. [CrossRef] [Google Scholar]
- K. Guizien and E. Barthélemy, Accuracy of solitary wave generation by a piston wave maker. J. Hydraul. Res. 40 (2002) 321–331. [CrossRef] [Google Scholar]
- L. Rayleigh, On waves. Phil. Mag. 1 (1876) 257–279. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.